Skip to main content
Log in

Non-rigid point set registration: recent trends and challenges

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Non-rigid point set registration has been used in a wide range of computer vision applications such as human movement tracking, medical image analysis, three dimensional (3D) object reconstruction and is a very challenging task. It has two fundamental tasks. One is to find correspondences between two or more point sets and another is to transform a point set so that it aligns with other point sets. There has been significant progress in the past two decades in the non-rigid registration field but it still has major challenges and is an active research area in the computer vision and pattern recognition community. In this review, we present a survey of non-rigid point set registration. Unlike recent surveys, we focus on the mathematical foundations of non-rigid registration methods, categorize the methods from several perspectives, and discuss open challenges. We categorize the methods according to correspondence models, motivations, and challenges such as deformation, data degradation, computational efficiency, and different constraints used in the methods to achieve accurate registration results. We present the publicly available data sets and different evaluation techniques employed in the methods. Further, we discuss open challenges, recent trends, and potential directions for future work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • 3DScan: 3D Scanning Library, http://graphics.stanford.edu/data/3Dscanrep

  • Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J (2005) Scape: shape completion and animation of people. ACM Trans Graph 24(3):408–416

    Google Scholar 

  • Archive3D: Archive3d, http://archive3d.net/

  • Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision—ECCV 2006. Berlin, Heidelberg, pp 404–417

    Google Scholar 

  • Bednarik J, Fua P, Salzmann M (2018) Learning to reconstruct texture-less deformable surfaces from a single view. In: 2018 international conference on 3d vision (3DV), pp 606–615

  • Belkin M, Niyogi P (2008) Towards a theoretical foundation for Laplacian-based manifold methods. J Comput Syst Sci 74(8):1289–1308 (learning theory 2005)

    MathSciNet  MATH  Google Scholar 

  • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  • Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Google Scholar 

  • BIT: biometrics ideal test, http://biometrics.idealtest.org/

  • Bogo F, Romero J, Pons-Moll G, Black MJ (2017) Dynamic faust: registering human bodies in motion. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 5573–5582

  • Bronstein A, Bronstein M, Kimmel R (2008a) Numerical geometry of non-rigid shapes. Springer, Incorporated

    MATH  Google Scholar 

  • Bronstein AM, Bronstein MM, Bruckstein AM, Kimmel R (2008b) Analysis of two-dimensional non-rigid shapes. Int J Comput Vis 78(1):67–88

    MATH  Google Scholar 

  • Cao H, Wang H, Zhang N, Yang Y, Zhou Z (2022) Robust probability model based on variational bayes for point set registration. Knowl Based Syst 241:108182

    Google Scholar 

  • Castillo R Dir-lab, https://www.dir-lab.com/index.html

  • CCC: complicated chinese characters, https://github.com/xdregis/complicated_chinese_characters

  • Chang S, Ahn C, Lee M, Oh S (2020) Graph-matching-based correspondence search for nonrigid point cloud registration. Comput Vis Image Underst 192:102899

    Google Scholar 

  • Chen Z, Haykin S (2002) On different facets of regularization theory. Neural Comput 14(12):2791–2846

    MATH  Google Scholar 

  • Chen QY, Feng DZ, Hu HS (2022) A robust non-rigid point set registration algorithm using both local and global constraints. Vis Comput

  • Cho M, Alahari K, Ponce J (2013) Learning graphs to match. In: 2013 IEEE international conference on computer vision. pp 25–32

  • Chui H, Rangarajan A (2000a) A feature registration framework using mixture models. In: Proceedings IEEE workshop on mathematical methods in biomedical image analysis. MMBIA-2000 (Cat. No.PR00737). pp 190–197

  • Chui H, Rangarajan A (2000b) A new algorithm for non-rigid point matching. In: Proceedings IEEE conference on computer vision and pattern recognition. CVPR 2000 (Cat. No.PR00662) 2:44–51

  • Chui H, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Comput Vis Image Underst 89(2):114–141

    MATH  Google Scholar 

  • Collet A, Chuang M, Sweeney P, Gillett D, Evseev D, Calabrese D, Hoppe H, Kirk A, Sullivan S (2015) High-quality streamable free-viewpoint video. ACM Trans Graph 34(4):1–3

    Google Scholar 

  • Combes B, Prima S (2020) An efficient EM-ICP algorithm for non-linear registration of large 3D point sets. Comput Vis Image Underst 191:102854

    Google Scholar 

  • Cour T, Srinivasan P, Shi J (2007) Balanced graph matching. In: Schölkopf B, Platt J, Hoffman T (eds) Advances in neural information processing systems, vol 19. MIT Press, Cambridge

    Google Scholar 

  • Dan T, Yang Y, Xing L, Yang K, Zhang Y, Ong SH, Song F, Gao X (2018) Multifeature energy optimization framework and parameter adjustment-based nonrigid point set registration. J Appl Remote Sens 12(3):1–27

    Google Scholar 

  • Datasets C Cmu house and hotel sequence images, http://vasc.ri.cmu.edu/idb/html/motion/house/index.html

  • Duchenne O, Bach F, Kweon IS, Ponce J (2009) A tensor-based algorithm for high-order graph matching. In: 2009 IEEE conference on computer vision and pattern recognition. pp 1980–1987

  • Duchenne O, Bach F, Kweon IS, Ponce J (2011) A tensor-based algorithm for high-order graph matching. IEEE Trans Pattern Anal Mach Intell 33(12):2383–2395

    Google Scholar 

  • Dupej J, Vaclav Pelikan J (2015) Low-rank matrix approximations for coherent point drift. Pattern Recogn Lett 52:53–58

    Google Scholar 

  • Feng XW, Feng DZ (2020) A robust nonrigid point set registration method based on collaborative correspondences. Sensors (Basel) 20:3248

    Google Scholar 

  • Feng W, Zhang J, Cai H, Xu H, Hou J, Bao H (2021) Recurrent multi-view alignment network for unsupervised surface registration. In: 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR). pp 10292–10302

  • Frome A, Huber D, Kolluri R, Bülow T, Malik J (2004) Recognizing objects in range data using regional point descriptors. Computer vision - ECCV 2004. Springer, Berlin, Heidelberg, pp 224–237

    Google Scholar 

  • Fu M, Zhou W (2016) Non-rigid point set registration via mixture of asymmetric gaussians with integrated local structures. In: 2016 IEEE international conference on robotics and biomimetics (ROBIO). pp 999–1004

  • Ge S, Fan G (2015) Non-rigid articulated point set registration with local structure preservation. In: 2015 IEEE conference on computer vision and pattern recognition workshops (CVPRW). pp 126–133

  • Ge S, Fan G (2019) Topology-aware non-rigid point set registration via global—local topology preservation. Mach Vis Appl 30(4):717–735

    Google Scholar 

  • Ge S, Fan G, Ding M (2014) Non-rigid point set registration with global-local topology preservation. In: 2014 IEEE conference on computer vision and pattern recognition workshops. pp 245–251

  • Glaunes J, Trouvé A, Younes L (2004) Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition. pp 712–718. CVPR’04, IEEE Computer Society, USA

  • Golyanik V, Taetz B, Reis G, Stricker D (2016) Extended coherent point drift algorithm with correspondence priors and optimal subsampling. In: 2016 IEEE winter conference on applications of computer vision (WACV). pp 1–9

  • Golyanik V, Shimada S, Varanasi K, Stricker D (2018) Hdm-net: monocular non-rigid 3D reconstruction with learned deformation model. In: Bourdot P, Cobb S, Interrante V, kato H, Stricker D (eds) Virtual reality and augmented reality. Springer, Cham, pp 51–72

    Google Scholar 

  • Greengard L, Strain J (1991) The fast Gauss transform. SIAM J Sci Comput 12(1):79–94

    MathSciNet  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer Series in Statistics. Springer, New York

    MATH  Google Scholar 

  • Hein M, Audibert JY, von Luxburg U (2005) From graphs to manifolds—weak and strong pointwise consistency of graph Laplacians. Learning theory. Springer, Berlin, Heidelberg, pp 470–485

    Google Scholar 

  • Hinton GE, Williams CKI, Revow MD (1992) Adaptive elastic models for hand-printed character recognition. In: Moody JE, Hanson SJ, Lippmann RP (eds) Advances in neural information processing systems. Morgan-Kaufmann, Burlington, pp 512–519

    Google Scholar 

  • Hirose O (2017) Dependent landmark drift: robust point set registration with a gaussian mixture model and a statistical shape model. ArXiv abs/1711.06588

  • Hirose O (2020) Acceleration of non-rigid point set registration with downsampling and gaussian process regression. IEEE Trans Pattern Anal Mach Intell 43(8):2858–2865

    Google Scholar 

  • Hirose O (2021) A Bayesian formulation of coherent point drift. IEEE Trans Pattern Anal Mach Intell 43(7):2269–2286

    Google Scholar 

  • Horaud R, Niskanen M, Dewaele G, Boyer E (2009) Human motion tracking by registering an articulated surface to 3D points and normals. IEEE Trans Pattern Anal Mach Intell 31(1):158–163

    Google Scholar 

  • Huang X, Zhang J, Fan L, Wu Q, Yuan C (2017) A systematic approach for cross-source point cloud registration by preserving macro and micro structures. IEEE Trans Image Process 26(7):3261–3276

    MathSciNet  MATH  Google Scholar 

  • Huang X, Mei G, Zhang J (2020) Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR). pp 11363–11371

  • Jeannin S, Bober M (1999) Description of core experiments for mpeg-7 motion/shape. MPEG-7, ISO/IEC/JTC1/SC29/WG11/MPEG99 N 2690

  • Jian B, Vemuri BC (2005) A robust algorithm for point set registration using mixture of gaussians. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1. 2:1246–1251

  • Jian B, Vemuri BC (2011) Robust point set registration using gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 33(8):1633–1645

    Google Scholar 

  • Johnson AE, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach Intell 21(5):433–449

    Google Scholar 

  • Kim VG, Lipman Y, Funkhouser T (2011) Blended intrinsic maps. In: ACM SIGGRAPH 2011 Papers. SIGGRAPH ’11, Association for Computing Machinery, New York, NY, USA

  • Kolesov I, Lee J, Vela P, Tannenbaum A (2013a) A stochastic approach for non-rigid image registration. In: Egiazarian KO, Agaian SS, Gotchev AP (eds) Image processing: algorithms and systems XI, vol 8655. International Society for Optics and Photonics, SPIE, Bellingham, pp 282–296

    Google Scholar 

  • Kolesov I, Lee J, Vela P, Tannenbaum A (2013b) Stochastic image registration with user constraints. In: Ourselin S, Haynor DR (eds) Medical imaging 2013: image processing, vol 8669. International Society for Optics and Photonics, SPIE, Bellingham, pp 845–851

    Google Scholar 

  • Kolesov I, Lee J, Sharp G, Vela P, Tannenbaum A (2016) A stochastic approach to diffeomorphic point set registration with landmark constraints. IEEE Trans Pattern Anal Mach Intell 38(2):238–251

    Google Scholar 

  • Kong L, Yuan X, Maharjan AM (2018) A hybrid framework for automatic joint detection of human poses in depth frames. Pattern Recogn 77:216–225

    Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Google Scholar 

  • Leordeanu M, Hebert M (2005) A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE international conference on computer vision (ICCV’05) Volume 1. 2:1482–1489

  • Li Y, Harada T (2022) Lepard: learning partial point cloud matching in rigid and deformable scenes. In: 2022 IEEE/cvf conference on computer vision and pattern recognition (CVPR). pp 5554–5564

  • Li T, Bolkart T, Black MJ, Li H, Romero J (2017) Learning a model of facial shape and expression from 4D scans. ACM Trans Graph 36(6):194

    Google Scholar 

  • Li X, Wang L, Fang Y (2019) Pc-net: Unsupervised point correspondence learning with neural networks. In: 2019 international conference on 3D vision (3DV). pp 145–154

  • Lian W, Zhang L, Yang MH (2017) An efficient globally optimal algorithm for asymmetric point matching. IEEE Trans Pattern Anal Mach Intell 39(7):1281–1293

    Google Scholar 

  • Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Google Scholar 

  • Lipman Y, Funkhouser T (2009) Möbius voting for surface correspondence. ACM Trans Graph 28(3):1–2

    Google Scholar 

  • Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T (2007) A survey for the quadratic assignment problem. Eur J Oper Res 176(2):657–690

    MathSciNet  MATH  Google Scholar 

  • Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision. 2: 1150–1157

  • Lu Q, Lu Y, Xiao M, Yuan X, Jia W (2019a) 3D-Fhnet: three-dimensional fusion hierarchical reconstruction method for any number of views. IEEE Access 7:172902–172912

    Google Scholar 

  • Lu Q, Xiao M, Lu Y, Yuan X, Yu Y (2019b) Attention-based dense point cloud reconstruction from a single image. IEEE Access 7:137420–137431

    Google Scholar 

  • Lu W, Wan G, Zhou Y, Fu X, Yuan P, Song S (2019c) Deepvcp: an end-to-end deep neural network for point cloud registration. In: 2019 IEEE/CVF international conference on computer vision (ICCV). pp 12–21

  • Luo J, Yuan M, Fu K, Wang M, Zhang C (2022) Deep graph matching based dense correspondence learning between non-rigid point clouds. IEEE Robot Autom Lett 7(3):5842–5849

    Google Scholar 

  • Ma J, Zhao J, Tian J, Tu Z, Yuille AL (2013) Robust estimation of nonrigid transformation for point set registration. In: 2013 IEEE conference on computer vision and pattern recognition. pp 2147–2154

  • Ma J, Zhao J, Tian J, Yuille AL, Tu Z (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721

    MathSciNet  MATH  Google Scholar 

  • Ma J, Qiu W, Zhao J, Ma Y, Yuille AL, Tu Z (2015) Robust l2e estimation of transformation for non-rigid registration. IEEE Trans Signal Process 63(5):1115–1129

    MathSciNet  MATH  Google Scholar 

  • Ma J, Zhao J, Yuille AL (2016) Non-rigid point set registration by preserving global and local structures. IEEE Trans Image Process 25(1):53–64

    MathSciNet  MATH  Google Scholar 

  • Ma J, Zhao J, Guo H, Jiang J, Zhou H, Gao Y (2017) Locality preserving matching. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI-17. pp 4492–4498

  • Ma J, Wu J, Zhao J, Jiang J, Zhou H, Sheng QZ (2019a) Nonrigid point set registration with robust transformation learning under manifold regularization. IEEE Trans Neural Netw Learn Syst 30(12):3584–3597

    MathSciNet  Google Scholar 

  • Ma J, Zhao J, Jiang J, Zhou H, Guo X (2019b) Locality preserving matching. Int J Comput Vision 127(5):512–531

    MathSciNet  MATH  Google Scholar 

  • Maharjan A, Yuan X (2020) Point set registration of large deformation using auxiliary landmarks. Urban intelligence and applications. Springer, Singapore, pp 86–98

    Google Scholar 

  • Maharjan A, Yuan X (2022) Registration of human point set using automatic key point detection and region-aware features. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. pp 741–749

  • Maharjan A, Yuan X, Lu Q, Fan Y, Chen T (2021) Non-rigid registration of point clouds using landmarks and stochastic neighbor embedding. J Electron Imaging 30(3):1–15

    Google Scholar 

  • Maiseli B, Gu Y, Gao H (2017) Recent developments and trends in point set registration methods. J Vis Commun Image Represent 46:95–106

    Google Scholar 

  • Marin R, Melzi S, Rodolà E, Castellani U (2020) Farm: functional automatic registration method for 3D human bodies. Comput Graph Forum 39(1):160–173

    Google Scholar 

  • Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vision 65:2005

    Google Scholar 

  • Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Google Scholar 

  • Myronenko A, Song X, Nán MACP (2007) Non-rigid point set registration: coherent point drift. In: Schölkopf B, Platt JC, Hoffman T (eds) Advances in neural information processing systems 19. MIT Press, Cambridge, pp 1009–1016

    Google Scholar 

  • Nordstrøm MM, Larsen M, Sierakowski J, Stegmann MB (2004) The IMM face database—an annotated dataset of 240 face images. Tech. rep., Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby

  • OSU A Accad motion capture data, https://accad.osu.edu/research/motion-lab/mocap-system-and-data

  • Pais GD, Miraldo P, Ramalingam S, Govindu VM, Nascimento JC, Chellappa R (2020) 3DRegNet: a deep neural network for 3D point registration. pp 7191–7201

  • Panaganti V, Aravind R (2015) Robust nonrigid point set registration using graph-laplacian regularization. In: IEEE winter conference on applications of computer vision. pp 1137–1144

  • Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall Inc, USA

    MATH  Google Scholar 

  • Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: IEEE conference on computer vision and pattern recognition

  • Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE conference on computer vision and pattern recognition

  • Qu HB, Wang JQ, Li B, Yu M (2017) Probabilistic model for robust affine and non-rigid point set matching. IEEE Trans Pattern Anal Mach Intell 39(2):371–384

    Google Scholar 

  • Rangarajan A, Chui H, Mjolsness E, Pappu S, Davachi L, Goldman-Rakic P, Duncan J (1997) A robust point-matching algorithm for autoradiograph alignment. Med Image Anal 1:379–398

    Google Scholar 

  • Revow M, Williams CKI, Hinton GE (1996) Using generative models for handwritten digit recognition. IEEE Trans Pattern Anal Mach Intell 18(6):592–606

    Google Scholar 

  • Rusu RB, Cousins S (2011) 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation (ICRA). Shanghai, China

  • Rusu RB, Blodow N, Marton ZC, Beetz M (2008) Aligning point cloud views using persistent feature histograms. In: 2008 IEEE/RSJ international conference on intelligent robots and systems. pp 3384–3391

  • Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE international conference on robotics and automation. pp 3212–3217

  • Saval-Calvo M, Azorin-Lopez J, Fuster-Guillo A, Villena-Martinez V, Fisher RB (2018) 3D non-rigid registration using color: color coherent point drift. Comput Vis Image Underst 169:119–135

    Google Scholar 

  • Shimada S, Golyanik V, Tretschk E, Stricker D, Theobalt C (2019) Dispvoxnets: non-rigid point set alignment with supervised learning proxies. In: 2019 international conference on 3D vision (3DV). pp 27–36

  • Song G, Fan G (2015) Articulated non-rigid point set registration for human pose estimation from 3D sensors. Sensors (Basel, Switzerland) 15:15218–45

    Google Scholar 

  • Stegmann MB, Gomez DD (2002) A brief introduction to statistical shape analysis (mar 2002), images, annotations and data reports are placed in the enclosed zip-file

  • Sumner RW, Popović J (2004) Deformation transfer for triangle meshes. ACM Trans Graph 23(3):399–405

    Google Scholar 

  • Tajdari F, Huysmans T, Yang Y, Song Y (2022) Feature preserving non-rigid iterative weighted closest point and semi-curvature registration. IEEE Trans Image Process 31:1841–1856

    Google Scholar 

  • Tam GK, Cheng ZQ, Lai YK, Langbein FC, Liu Y, Marshall D, Martin RR, Sun XF, Rosin PL (2013) Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans Vis Comput Gr 19(7):1199–1217

    Google Scholar 

  • Tao W, Sun K (2014) Asymmetrical gauss mixture models for point sets matching. In: 2014 IEEE conference on computer vision and pattern recognition. pp 1598–1605

  • Torresani L, Kolmogorov V, Rother C (2008) Feature correspondence via graph matching: models and global optimization. In: Forsyth D, Torr P, Zisserman A (eds) Computer vision—ECCV 2008. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 596–609

    Google Scholar 

  • Torresani L, Kolmogorov V, Rother C (2013) A dual decomposition approach to feature correspondence. IEEE Trans Pattern Anal Mach Intell 35(2):259–271

    Google Scholar 

  • Trappolini G, Cosmo L, Moschella L, Marin R, Melzi S, Rodola E (2021) Shape registration in the time of transformers. In: 35th conference on neural information processing systems (NeurIPS 2021)

  • Tsin Y, Kanade T (2004) A correlation-based approach to robust point set registration. In: Pajdla T, Matas J (eds) Computer vision— ECCV 2004. Springer, Berlin, Heidelberg, pp 558–569

    Google Scholar 

  • Tuytelaars T, Van Gool L (2004) Matching widely separated views based on affine invariant regions. Int J Comput Vis 59(1):61–85

    Google Scholar 

  • Wahba G (1990) Spline models for observational data. Soc Ind Appl Math

  • Wang G, Chen Y (2017) Fuzzy correspondences guided gaussian mixture model for point set registration. Knowl Based Syst 136:200–209

    Google Scholar 

  • Wang G, Chen Y (2021) Scm: spatially coherent matching with Gaussian field learning for nonrigid point set registration. IEEE Trans Neural Net Learn Syst 32(1):203–213

    MathSciNet  Google Scholar 

  • Wang L, Fang Y (2019) Coherent point drift networks: unsupervised learning of non-rigid point set registration. CoRR abs/1906.03039

  • Wang F, Vemuri BC, Rangarajan A, Eisenschenk SJ (2008) Simultaneous nonrigid registration of multiple point sets and atlas construction. IEEE Trans Pattern Anal Mach Intell 30(11):2011–2022

    Google Scholar 

  • Wang G, Wang Z, Chen Y, Liu X, Ren Y, Peng L (2016a) Learning coherent vector fields for robust point matching under manifold regularization. Neurocomputing 216:393–401

    Google Scholar 

  • Wang H, Liu X, Yuan X, Liang D (2016b) Multi-perspective terrestrial LiDAR point cloud registration using planar primitives. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS). pp 6722–6725

  • Wang G, Zhou Q, Chen Y (2017) Robust non-rigid point set registration using spatially constrained gaussian fields. IEEE Trans Image Process 26(4):1759–1769

    MathSciNet  MATH  Google Scholar 

  • Wang G, Chen Y, Zheng X (2018) Gaussian field consensus: a robust nonparametric matching method for outlier rejection. Pattern Recogn 74:305–316

    Google Scholar 

  • Wang Z, Xue N, Lei L, Xia GS (2022) Partial wasserstein adversarial network for non-rigid point set registration. In: The international conference on learning representations (ICLR)

  • Williams C, Seeger M (2001) Using the nyström method to speed up kernel machines. In: Leen T, Dietterich T, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge

    Google Scholar 

  • Yang J (2011) The thin plate spline robust point matching (tps-rpm) algorithm: A revisit. Pattern Recogn Lett 32(7):910–918

    Google Scholar 

  • Yang C, Duraiswami R, Gumerov NA, Davis L (2003) Improved fast gauss transform and efficient kernel density estimation. In: Proceedings ninth IEEE international conference on computer vision. 1:664–671

  • Yang Y, Ong SH, Foong KWC (2015) A robust global and local mixture distance based non-rigid point set registration. Pattern Recogn 48(1):156–173

    Google Scholar 

  • Yang C, Liu Y, Jiang X, Zhang Z, Wei L, Lai T, Chen R (2018) Non-rigid point set registration via adaptive weighted objective function. IEEE Access 6:75947–75960

    Google Scholar 

  • Ye M, Shen Y, Du C, Pan Z, Yang R (2016) Real-time simultaneous pose and shape estimation for articulated objects using a single depth camera. IEEE Trans Pattern Anal Mach Intell 38(8):1517–1532

    Google Scholar 

  • Yefeng Zheng, Doermann D (2006) Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans Pattern Anal Mach Intell 28(4):643–649

    Google Scholar 

  • Yuan X, Kong L, Feng D, Wei Z (2017) Automatic feature point detection and tracking of human actions in time-of-flight videos. IEEE/CAA J Autom Sin 4(4):677–685

    Google Scholar 

  • Yuan X, Feng D, Zuo Z (2018) Automatic construction of aerial corridor from discrete LiDAR point cloud. Springer, Cham, pp 449–465

    Google Scholar 

  • Yuille AL, Grzywacz NM (1988) The motion coherence theory. In: [1988 Proceedings] second international conference on computer vision. pp 344–353

  • Zaharescu A, Boyer E, Varanasi K, Horaud R (2009) Surface feature detection and description with applications to mesh matching. In: 2009 IEEE conference on computer vision and pattern recognition. pp 373–380

  • Zeng Y, Wang C, Wang Y, Gu X, Samaras D, Paragios N (2010) Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE computer society conference on computer vision and pattern recognition. pp 382–389

  • Zeng Y, Wang C, Gu X, Samaras D, Paragios N (2016) Higher-order graph principles towards non-rigid surface registration. IEEE Trans Pattern Anal Mach Intell 38(12):2416–2429

    Google Scholar 

  • Zeng Y, Qian Y, Zhu Z, Hou J, Yuan H, He Y (2021) Corrnet3D: unsupervised end-to-end learning of dense correspondence for 3D point clouds. In: 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR). pp 6048–6057

  • Zhang L, Snavely N, Curless B, Seitz SM (2004) Spacetime faces: high resolution capture for modeling and animation. ACM Trans Graph 23(3):548–558

    Google Scholar 

  • Zhang P, Qiao Y, Wang S, Yang J, Zhu Y (2017a) A robust coherent point drift approach based on rotation invariant shape context. Neurocomputing 219:455–473

    Google Scholar 

  • Zhang S, Yang Y, Yang K, Luo Y, Ong SH (2017b) Point set registration with global-local correspondence and transformation estimation. In: 2017 IEEE international conference on computer vision (ICCV). pp 2688–2696

  • Zhong Y (2009) Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: 2009 IEEE 12th international conference on computer vision workshops, ICCV workshops. pp 689–696

  • Zhou Z, Zheng J, Dai Y, Zhou Z, Chen S (2014) Robust non-rigid point set registration using student’s-t mixture model. PLoS ONE 9:e91381

    Google Scholar 

  • Zhou Z, Tong B, Geng C, Hu J, Zheng J, Dai Y (2017) Direct point-based registration for precise non-rigid surface matching using student’s-t mixture model. Biomed Signal Process Control 33:10–18

    Google Scholar 

  • Zhou Z, Tu J, Geng C, Hu J, Tong B, Ji J, Dai Y (2018) Accurate and robust non-rigid point set registration using student’s-t mixture model with prior probability modeling. Sci Rep 8:1–7

    Google Scholar 

  • Zhu H, Guo B, Zou K, Li Y, Yuen KV, Mihaylova L, Leung H (2019a) A review of point set registration: from pairwise registration to groupwise registration. Sensors 19(5):1191

    Google Scholar 

  • Zhu H, Zou K, Li Y, Cen M, Mihaylova L (2019b) Robust non-rigid feature matching for image registration using geometry preserving. Sensors 19(12):2729

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Maharjan, A. Non-rigid point set registration: recent trends and challenges. Artif Intell Rev 56, 4859–4891 (2023). https://doi.org/10.1007/s10462-022-10292-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10292-4

Keywords

Navigation