Skip to main content
Log in

Measuring Spatial Access of Vulnerable Population to HIV Testing Facilities in the Baton Rouge Metropolitan Statistical Area, Louisiana

  • Original Paper
  • Published:
AIDS and Behavior Aims and scope Submit manuscript

Abstract

Ensuring adequate and equitable access to affordable HIV testing is a crucial step toward ending the HIV epidemic (EHE). Using the high-burden Baton Rouge Metropolitan Statistical Area (MSA) as an example, we measure spatial access to HIV testing facilities for vulnerable populations and assess whether their access would improve if eliminating a considerable barrier—costs. Locations and status (free, low-cost, and full cost) of HIV testing facilities are searched on the Internet and confirmed through a field survey. Vulnerable populations include the uninsured and people living with HIV (PLWH), disaggregated from county-level HIV prevalence data. Spatial access is computed by a normalized urban-rural two-step floating catchment area (NUR2SFCA) method. Our survey confirms that only 11% and 37% of the 103 Internet-searched HIV testing facilities are indeed free and low-cost. Making more facilities cheaper or free increases the average access of PLWH, the uninsured, and the entire population but their geographic patterns vary. Free testing facilities, clustered in Baton Rouge city, are highly accessible to 82.6%, 69.4%, and 70.2% of three population groups living in East and West Baton Rouge Parish. In comparison, making all low-cost facilities free increases access in most outlying parishes but at the cost of reducing access in East Baton Rouge Parish, leaving west Livingston, north Iberville, and east Pointe Coupee Parish with the poorest access. Making all full-cost facilities cheaper or free exhibits a similar pattern. The study has important policy implications for where and how to improve access to HIV testing for vulnerable populations.

Resumen

Medimos el acceso espacial a las instalaciones de pruebas de VIH para poblaciones vulnerables y evaluamos si su acceso mejoraría si se eliminaran las barreras de costos, utilizando como ejemplo el área estadística metropolitana de Baton Rouge, que tiene una alta carga. Nuestra encuesta confirma que el 11% y el 37% de los 103 centros de pruebas de VIH buscados en Internet son efectivamente gratuitos y de bajo costo. Hacer que más instalaciones sean más baratas o gratuitas aumenta el acceso promedio de las PLWH, las personas sin seguro y toda la población, pero sus patrones geográficos varían. Las instalaciones de pruebas gratuitas, agrupadas en la ciudad de Baton Rouge, son muy accesibles para el 82,6%, el 69,4% y el 70,2% de los tres grupos de población del este y oeste de Baton Rouge. En comparación, hacer que las instalaciones de bajo costo sean gratuitas aumenta el acceso en las parroquias periféricas, pero a costa de reducir el acceso en East Baton Rouge. Hacer que las instalaciones de costo total sean más baratas o gratuitas muestra un patrón similar. El estudio tiene importantes implicaciones políticas para mejorar el acceso a las pruebas del VIH para las poblaciones vulnerables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The populations and various variables used to estimate PLWH are extracted from the 2014–2018 American Community Survey (ACS) on the U.S. Census Bureau’s website: https://www2.census.gov/geo/tiger/TIGER_DP/2018ACS/. The HIV prevalence rate data are extracted from the AIDSVu website: https://aidsvu.org/. The road network is extracted from the United States Geological Survey (USGS): https://data.usgs.gov/datacatalog/data/USGS:ad3d631d-f51f-4b6a-91a3-e617d6a58b4e. Some HIV testing facilities are listed in Appendix, and the full list of HIV testing facilities can be requested from the corresponding author. We use ArcGIS Pro to calculate the spatial accessibility of each population group to different groups of HIV testing facilities. We run the GWR model in ArcGIS Pro and the MLR model in the R software to estimate PLWH.

Abbreviations

ACS:

American Community Survey

AIC:

Akaike Information Criterion

CDC:

Centers for Disease Control and Prevention

EHE:

Ending the HIV Epidemic

GIS:

Geographic Information Systems

GWR:

Geographically Weighted Regression

MSM:

Men who have sex with men

MSA:

Metropolitan Statistical Area

PLWH:

People Living with HIV

PrEP:

Pre-Exposure Prophylaxis

RUCAs:

Rural-Urban Commuting Area Codes

SMLR:

Stepwise Multiple Linear Regression

SPAR:

Spatial Access Ratio

2SFCA:

Two-Step Floating Catchment Area

UNAIDS:

Joint United Nations Programme on HIV/AIDS

UR2SFCA:

Urban-Rural Two-Step Floating Catchment Area

U.S.:

United States

USDA:

U.S. Department of Agriculture

USGS:

United States Geological Survey (USGS)

VIF:

Variance Inflation Factor

References

  1. HIV.gov. About Ending the HIV Epidemic in the U.S. https://www.hiv.gov/federal-response/ending-the-hiv-epidemic/overview/. Accessed 13 May 2023.

  2. The White House. National HIV/AIDS strategy for the United States 2022–2025; 2021 https://files.hiv.gov/s3fs-public/NHAS-2022-2025.pdf. Accessed 2021.

  3. Centers for Disease Control and Prevention (CDC). HIV in the United States by region. https://www.cdc.gov/hiv/statistics/overview/geographicdistribution.html. Accessed 13 May 2023.

  4. Krueger A, Handel MV, Dietz PM, Williams WO, Patel D, Johnson AS. HIV testing, access to HIV-related services, and late-stage HIV diagnoses across US states, 2013–2016. Am J Public Health. 2019;109(11):1589–95. https://doi.org/10.2105/ajph.2019.305273.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schwarcz S, Richards TA, Frank H, et al. Identifying barriers to HIV testing: personal and contextual factors associated with late HIV testing. AIDS Care. 2011;23(7):892–900. https://doi.org/10.1080/09540121.2010.534436.

    Article  PubMed  Google Scholar 

  6. Centers for Disease Control and Prevention (CDC). HIV testing. https://www.cdc.gov/hiv/testing/index.html. Accessed 13 May 2023.

  7. Centers for Disease Control and Prevention (CDC). National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health. BRFSS prevalence & trends data. https://www.cdc.gov/brfss/brfssprevalence/. Accessed 14 May 2023.

  8. Sprague C, Simon SE. Ending HIV in the USA: integrating social determinants of health. Lancet. 2021;398(10302):742–3. https://doi.org/10.1016/S0140-6736(21)01236-8.

    Article  PubMed  Google Scholar 

  9. Centers for Disease Control and Prevention (CDC). HIV in the Southern United States; 2019. https://www.cdc.gov/hiv/pdf/policies/cdc-hiv-in-the-south-issue-brief.pdf. Accessed 2019.

  10. Wise JM, Ott C, Azuero A, et al. Barriers to HIV testing: patient and provider perspectives in the Deep South. AIDS Behav. 2019;23(4):1062–72. https://doi.org/10.1007/s10461-018-02385-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kimmel AD, Masiano SP, Bono RS, et al. Structural barriers to comprehensive, coordinated HIV care: geographic accessibility in the US South. AIDS Care. 2018;30(11):1459–68. https://doi.org/10.1080/09540121.2018.1476656.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eberhart MG, Voytek C, Hillier A, Metzger D, Blank M, Brady K. Travel distance to HIV medical care: a geographic analysis of weighted survey data from the Medical Monitoring Project in Philadelphia, PA. AIDS Behav. 2014;18:776–82.

    Article  CAS  PubMed  Google Scholar 

  13. Masiano SP, Martin EG, Bono RS, et al. Suboptimal geographic accessibility to comprehensive HIV care in the US: regional and urban–rural differences. J Int AIDS Soc. 2019;22(5):e25286. https://doi.org/10.1002/jia2.25286.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Centers for Disease Control and Prevention (CDC). Getting tested. https://www.cdc.gov/hiv/basics/hiv-testing/getting-tested.html. Accessed 18 May 2023.

  15. Terzian AS, Younes N, Greenberg AE, et al. Identifying spatial variation along the HIV care continuum: the role of distance to care on retention and viral suppression. AIDS Behav. 2018;22(9):3009–23. https://doi.org/10.1007/s10461-018-2103-8.

    Article  CAS  PubMed  Google Scholar 

  16. Ridgway JP, Almirol EA, Schmitt J, Schuble T, Schneider JA. Travel time to clinic but not neighborhood crime rate is associated with retention in care among HIV-positive patients. AIDS Behav. 2018;22(9):3003–8. https://doi.org/10.1007/s10461-018-2094-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kang J-Y, Farkhad BF, Chan M-pS, Michels A, Albarracin D, Wang S. Spatial accessibility to HIV testing, treatment, and prevention services in Illinois and Chicago, USA. PLoS ONE. 2022;17(7):e0270404. https://doi.org/10.1371/journal.pone.0270404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cope AB, Powers KA, Serre ML, et al. Distance to testing sites and its association with timing of HIV diagnosis. AIDS Care. 2016;28(11):1423–7. https://doi.org/10.1080/09540121.2016.1191599.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leibowitz AA, Taylor SL. Distance to public test sites and HIV testing. Med Care Res Rev. 2007;64(5):568–84. https://doi.org/10.1177/1077558707304634.

    Article  PubMed  Google Scholar 

  20. Luan H, Li G, Duncan DT, Sullivan PS, Ransome Y. Spatial accessibility of pre-exposure prophylaxis (PrEP): different measure choices and the implications for detecting shortage areas and examining its association with social determinants of health. Ann Epidemiol. 2023;86:72–79e3. https://doi.org/10.1016/j.annepidem.2023.07.004.

    Article  PubMed  Google Scholar 

  21. Wang F, Liu L. Computational methods and GIS applications in social sciences. Boca Raton: CRC; 2023.

    Book  Google Scholar 

  22. Wang C, Wang F, Onega T. Spatial behavior of cancer care utilization in distance decay in the Northeast region of the U.S. Travel Behav Soc. 2021;24:291–302. https://doi.org/10.1016/j.tbs.2021.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shahid R, Bertazzon S, Knudtson ML, Ghali WA. Comparison of distance measures in spatial analytical modeling for health service planning. BMC Health Serv Res. 2009;9(1):200. https://doi.org/10.1186/1472-6963-9-200.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guagliardo MF. Spatial accessibility of primary care: concepts, methods and challenges. Int J Health Geogr. 2004;3:3–13. https://doi.org/10.1186/1476-072X-3-3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo W, Wang F. Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. Environ Plan. 2003;30(6):865–84. https://doi.org/10.1068/b29120.

    Article  Google Scholar 

  26. Luo W, Qi Y. An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health Place. 2009;15(4):1100–7. https://doi.org/10.1016/j.healthplace.2009.06.002.

    Article  PubMed  Google Scholar 

  27. Luo W, Whippo T. Variable catchment sizes for the two-step floating catchment area (2SFCA) method. Health Place. 2012;18(4):789–95. https://doi.org/10.1016/j.healthplace.2012.04.002.

    Article  PubMed  Google Scholar 

  28. Zhou Y, Beyer KMM, Laud PW, et al. An adapted two-step floating catchment area method accounting for urban–rural differences in spatial access to pharmacies. J Pharm Health Serv Res. 2021;12(1):69–77. https://doi.org/10.1093/jphsr/rmaa022.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Drake C, Nagy D, Nguyen T, et al. A comparison of methods for measuring spatial access to health care. Health Serv Res. 2021;56(5):777–87. https://doi.org/10.1111/1475-6773.13700.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Centers for Disease Control and Prevention (CDC). AtlasPlus—Maps. https://gis.cdc.gov/grasp/nchhstpatlas/maps.html. Accessed May 20 2023.

  31. Emory University’s Rollins School of Public Health. AIDSVu—understanding HIV where you live. https://aidsvu.org/. Accessed 18 May 2023.

  32. King G. A solution to the ecological inference problem: reconstructing individual behavior from aggregate data. Princeton: Princeton University Press; 1997.

    Google Scholar 

  33. Kuai X, Wang F. Global and localized neighborhood effects on public transit ridership in Baton Rouge, Louisiana. Appl Geogr. 2020;124:102338. https://doi.org/10.1016/j.apgeog.2020.102338.

    Article  Google Scholar 

  34. Luo L, McLafferty S, Wang F. Analyzing spatial aggregation error in statistical models of late-stage cancer risk: a Monte Carlo simulation approach. Journal article. Int J Health Geogr. 2010;9(1):51. https://doi.org/10.1186/1476-072x-9-51.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shi X. Evaluating the uncertainty caused by Post Office Box addresses in environmental health studies: a restricted Monte Carlo approach. Int J Geogr Inf Sci. 2007;21(3):325–40. https://doi.org/10.1080/13658810600924211.

    Article  Google Scholar 

  36. Hu Y, Downs J. Measuring and visualizing place-based space-time job accessibility. J Transp Geogr. 2019;74:278–88. https://doi.org/10.1016/j.jtrangeo.2018.12.002.

    Article  Google Scholar 

  37. Louisiana Department of Health. Louisiana HIV, AIDS, and early syphilis surveillance; 2022. https://ldh.la.gov/assets/oph/HIVSTD/HIV_Syphilis_Quarterly_Reports/FirstQuarter2022HIVSyphilisReport.pdf. Accessed 2022.

  38. Centers for Disease Control and Prevention (CDC). Understanding care|Living with HIV|HIV basics|HIV/AIDs. https://www.cdc.gov/hiv/basics/livingwithhiv/understanding-care.html. Accessed 25 Sept 2023.

  39. Census Bureau US. 2014–2018 American Community Survey (ACS) 5-year estimates. https://www2.census.gov/geo/tiger/TIGER_DP/2018ACS/. Accessed 18 May 2023.

  40. United States Geological Survey (USGS). USGS national transportation dataset (NTD) downloadable data collection. https://data.usgs.gov/datacatalog/data/USGS:ad3d631d-f51f-4b6a-91a3-e617d6a58b4e. Accessed 15 Oct 2019.

  41. Centers for Disease Control and Prevention (CDC). Social determinants of health among adults with diagnosed HIV infection, 2019; 2022. https://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-supplemental-report-vol-27-2.pdf. Accessed 2022.

  42. Centers for Disease Control and Prevention (CDC). HIV surveillance report; 2020. https://www.cdc.gov/hiv/library/reports/hiv-surveillance.html. Accessed 2020.

  43. Wang C, Wang F, Onega T. Delineation of cancer service areas anchored by major cancer centers in the United States. Cancer Res Commun. 2022;2(5):380–9. https://doi.org/10.1158/2767-9764.Crc-22-0099.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fotheringham AS, Charlton ME, Brunsdon C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ Plan A Econ Space. 1998;30(11):1905–27. https://doi.org/10.1068/a301905.

    Article  Google Scholar 

  45. Hurvich CM, Tsai C-L. A corrected akaike information criterion for vector autoregressive model selection. J Time Ser Anal. 1993;14(3):271–9. https://doi.org/10.1111/j.1467-9892.1993.tb00144.x.

    Article  Google Scholar 

  46. Federal Highway Administration (FHWA). FHWA NHTS report: Trends in discretionary travel from 2017 national household travel survey; 2019. https://nhts.ornl.gov/assets/FHWA_NHTS_Report_3D_Final_021119.pdf. Accessed 2019.

  47. U.S. Census Bureau. QuickFacts Louisiana. https://www.census.gov/quickfacts/fact/table/LA/NES010219. Accessed 17 May 2023.

  48. U.S. Census Bureau. Travel time to work in the United States: 2019. American Community Survey Reports; 2021' https://www.census.gov/content/dam/Census/library/publications/2021/acs/acs-47.pdf. Accessed 2021.

  49. Hung P, Deng S, Zahnd WE, et al. Geographic disparities in residential proximity to colorectal and cervical cancer care providers. Cancer. 2020;126(5):1068–76. https://doi.org/10.1002/cncr.32594.

    Article  PubMed  Google Scholar 

  50. U.S. Department of Agriculture (USDA). Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/. Accessed 18 May 2023.

  51. Wan N, Zhan FB, Zou B, Chow E. A relative spatial access assessment approach for analyzing potential spatial access to colorectal cancer services in Texas. Appl Geogr. 2012;32(2):291–9. https://doi.org/10.1016/j.apgeog.2011.05.001.

    Article  Google Scholar 

  52. Delmelle EM, Desjardins MR, Jung P, et al. Uncertainty in geospatial health: challenges and opportunities ahead. Ann Epidemiol. 2022;65:15–30. https://doi.org/10.1016/j.annepidem.2021.10.002.

    Article  PubMed  Google Scholar 

  53. Pew Research Center. Internet/Broadband fact sheet. https://www.pewresearch.org/internet/fact-sheet/internet-broadband/. Accessed 25 Oct 2023.

  54. Centers for Disease Control and Prevention (CDC). Let’s stop HIV together. https://www.cdc.gov/stophivtogether/. Accessed 25 Oct 2023.

  55. Sui D. Ecological fallacy. In: Kobayashi A. ed. International Encyclopedia of Human Geography (Second Edition). Elsevier; 2009. pp. 11–13.

  56. Fotheringham AS, Wong DWS. The modifiable areal unit problem in multivariate statistical analysis. Environ Plann A: Econ Space. 1991;23(7):1025–44. https://doi.org/10.1068/a231025.

    Article  Google Scholar 

  57. HIV.gov. Ending the HIV Epidemic funding. https://www.hiv.gov/federal-response/ending-the-hiv-epidemic/funding/. Accessed 25 Oct 2023.

  58. Centers for Disease Control and Prevention (CDC). Telehealth practitioner’s guide for HIV prevention and care; 2022. https://www.cdc.gov/hiv/effective-interventions/library/telehealth/implementation-materials/cdc-hiv-ei-telehealth-practitioners-guide.pdf. Accessed 2022.

  59. Delmelle EM, Marsh DM, Dony C, Delamater PL. Travel impedance agreement among online road network data providers. Int J Geogr Inf Sci. 2019;33(6):1251–69. https://doi.org/10.1080/13658816.2018.1557662.

    Article  Google Scholar 

  60. Wang C, Leitner M, Paulus G. Multiscale analysis of spatial accessibility to acute hospitals in Carinthia, Austria. ISPRS Int J Geo-Inf. 2023;12(12):491.

    Article  Google Scholar 

Download references

Acknowledgements

Alina Prigozhina would like to thank the Department of Geography and Anthropology at Louisiana State University for funding of the R. C. West and R. J. Russell Graduate Student Field Research Award for the field survey to confirm HIV testing facilities. We would like to thank the editor and two anonymous reviewers for their valuable and constructive comments to help us prepare an improved version of our paper.

Funding

This study was supported by LSU R. C. West and R. J. Russell Graduate Student Field Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzhen Wang.

Ethics declarations

Competing interests

The authors declare no potential competing interests of conflict.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors agree to publish this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Prigozhina, A. & Leitner, M. Measuring Spatial Access of Vulnerable Population to HIV Testing Facilities in the Baton Rouge Metropolitan Statistical Area, Louisiana. AIDS Behav (2024). https://doi.org/10.1007/s10461-024-04304-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10461-024-04304-3

Keywords

Navigation