Skip to main content

Advertisement

Log in

Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Sustainable conservation of tropical resources required understanding of their distribution for effective assessment and definition of conservation priorities. In tropical areas, wild palms are highly valued keystone resources with growing demand for both subsistence uses and commercial trade. Here we focused on eight such species (Borassus aethiopum Mart., Eremospatha macrocarpa (G.Mann & H.Wendl.) H.Wendl., Hyphaene thebaica Mart., Laccosperma opacum (G.Mann & H.Wendl.) Drude, Phoenix reclinata Jacq., Raphia hookeri G.Mann & H.Wendl., Raphia sudanica A. Chev., and Raphia vinifera P.Beauv.). This study tested (i) how those palms distributions may be affected under future climate scenarios, and (ii) if species are effectively conserved currently and under future forecasts for their native distributional areas. Finally, we defined spatial priorities for the species’ conservation. Available bioclimatic and soil data layers were used for the modelling with maximum entropy approaches, and resulting maps were overlaid on the existing protected areas network. Results showed that much of the distribution of the species will remain largely stable, albeit with some expansion and retraction in some species; relationships with protected areas networks suggest that protected portions of species distributions will also remain stable. The areas identified as highest conservation priority differ between models even though the highest-priority areas holding most palm species are located along the coast (from Guinea to Nigeria). Further development of these analyses could aid in forming a more complete picture of the distributions and populations of the species, which in turn could aid in developing effective conservation strategies for this botanically important family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akoègninou A, Van der Burg WJ, Van der Maesen LJG (2006) Flore analytique du Bénin. Blackhuys Publishers, Cotonou & Wageningen

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Article  Google Scholar 

  • Balmford A, Albon S, Blakeman S (1992) Correlates of male mating success and female choice in a lek-breeding antelope. Behav Ecol 3:112–123

    Article  Google Scholar 

  • Barot S, Gignoux J (2003) Neighbourhood analysis in the savanna palm Borassus aethiopum: interplay of intraspecific competition and soil patchiness. J Veg Sci 14:79–88

    Google Scholar 

  • Barve N (2008) Tool for Partial-ROC ver 1.0, Biodiversity Institute, Lawrence, KS, USA

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modelling and species distribution modelling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Beck J (2013) Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses? Clim Change 116:177–189

    Article  Google Scholar 

  • Bjorholm S, Svenning J-C, Skov F, Balslev H (2008) To what extent does Tobler’s 1st law of geography apply to macroecology? A case study using American palms (Arecaceae). BMC Ecol 8:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Blach-Overgaard A, Svenning J-C, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391

    Google Scholar 

  • Boko M, Niang I, Nyong A, Vogel C (2007) Africa. Climate change 2007: impacts, adaptation and vulnerability. In: Canziani PML et al (eds) Contribution of working group II to the forth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Breil M, Panitz H-J (2013) Regional Climate Simulations with COSMO-CLM for West Africa using different soil-vegetation-atmosphere-transfer module’s (SVAT’s). Geophys Res Abstr 15:1423

    Google Scholar 

  • Brokamp G, Valderrama N, Mittelbach M, Grandez RCA, Barfod AS, Weigend M (2011) Trade in palm products in north-western South America. Bot Rev 77:571–606

    Article  Google Scholar 

  • Bruner AG, Gullison RE, Rice RE, Da Fonseca GA (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128

    Article  CAS  PubMed  Google Scholar 

  • Burkill HM (1997) The useful plants of West Tropical Africa, 2nd edn, vol. 4. Families M–R. Royal Botanic Gardens, Kew

  • Byg A, Balslev H (2001) Diversity and use of palms in Zahamena, eastern Madagascar. Biodivers Conserv 10:951–970

    Article  Google Scholar 

  • Cabral JS, Schurr FM (2010) Estimating demographic models for the range dynamics of plant species. Global Ecol Biogeogr 19:85–97

    Article  Google Scholar 

  • Clerici N, Bodini A, Eva H, Grégoire JM, Dulieu D, Paolini C (2007) Increased isolation of two biosphere reserves and surrounding protected areas (WAP Ecological Complex, West Africa). J Nat Conserv 15:26–40

    Article  Google Scholar 

  • Collen B, Ram M, Zamin T, McRae L (2008) The tropical biodiversity data gap: addressing disparity in global monitoring. Trop Conserv Science 1:75–88

    Article  Google Scholar 

  • Cunningham AB, Milton SJ (1987) Effects of basket-weaving industry on Mokola Palm and dye plants in north-western Botswana. Econ Bot 41:386–402

    Article  Google Scholar 

  • Dransfield J (1988) The palms of Africa and their relationships. In: Goldblatt P, Lowry PP (eds) Modern systematic studies in African botany. Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modeling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601

    Article  Google Scholar 

  • FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria

  • Faysse N, Errahj M, Imache A, Kemmoun H, Labbaci T (2014) Paving the way for social learning when governance is weak: supporting dialogue between stakeholders to face a groundwater crisis in Morocco. Soc Nat Res Int J 27:249–264

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18:2255–2261

    Article  Google Scholar 

  • Garcia RA, Burgess ND, Cabeza M, Rahbek C, Araújo MB (2012) Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Global Change Biol 18:1253–1269

    Article  Google Scholar 

  • Garcia RA, Cabeza M, Rahbek C, Araujo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579

    Article  PubMed  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Missouri Bot Gard 75:1–34

    Article  Google Scholar 

  • Good P, Jones C, Lowe J, Betts R, Gedney N (2013) Comparing tropical forest projections from two generations of Hadley centre earth system models, HADGEM-ES2-ES and HadCM3LC. J Clim 26:495–511

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettmann F (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • Gyan CA, Shackleton CM (2005) Abundance and commercialization of Phoenix reclinata in the King Williamstown area, South Africa. J Trop For Sci 17:334–345

    Google Scholar 

  • Hannah L (2010) A global conservation system for climate-change adaptation. Conserv Biol 24:70–77

    Article  PubMed  Google Scholar 

  • Hawthorne W (1990) Field guide to the forest trees of Ghana. Natural Resources Institute, London

    Google Scholar 

  • Henderson GL, Le SQ, Beaumont TG, James TDI (1997) U.S. Patent No. D383, 756. Washington, DC: U.S. Patent and Trademark Office

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Houehanou TD, Assogbadjo AE, Glèlè Kakaï R, Kyndt T, Houinato M, Sinsin B (2013) How far a protected area contributes to conserve habitat species composition and population structure of endangered African tree species (Benin, West Africa). Ecol Complex 13:60–68

    Article  Google Scholar 

  • Hunter M Jr, Dinerstein E, Hoekstra J, Lindenmayer D (2010) A call to action for conserving biological diversity in the face of climate change. Conserv Biol 24:1169–1171

    Article  PubMed  Google Scholar 

  • Joyal A, Deshaies L (1996) Développement local et PME québécoises innovantes: un lieu à explorer. Can J Reg Sci 19:333–348

    Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042

    Article  Google Scholar 

  • Kouassi KI, Barot S, Gignoux J, Bi IAZ (2008) Demography and life history of two rattan species, Eremospatha macrocarpa and Laccosperma secundiflorum, in Côte d’Ivoire. J Trop Ecol 24:493–503

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Locke H, Dearden P (2005) Rethinking protected area categories and the new paradigm. Environ Conserv 32:1–10

    Article  Google Scholar 

  • Macía MJ (2004) Multiplicity in palm uses by the Huaorani of Amazonian Ecuador. Bot J Linn Soc 144:149–159

    Article  Google Scholar 

  • Marinho MWS, Costa AA, Sales DC, Guimarães SO, da Silva EM, Júnior FCV (2013) Simulated extreme precipitation indices over Northeast Brasil in current climate and future scenarios RCP4.5 and RCP8.5. Geophys Res Abstr 15:12909

    Google Scholar 

  • Marshall AR, Platts PJ, Gereau RE, Kindeketa W, Kang’ethe S, Marchant R (2012) The genus Acacia (Fabaceae) in East Africa: distribution, diversity and the protected area network. Plant Ecol Evol 145:289–301

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  CAS  PubMed  Google Scholar 

  • Norris K, Asase A, Collen B, Gockowksi J, Mason J, Phalan B, Wade A (2010) Biodiversity in a forest-agriculture mosaic—the changing face of West African rainforests. Biol Conserv 143:2341–2350

    Article  Google Scholar 

  • Nur N, Jahncke J, Herzog MP, Howar J, Hyrenbach KD, Zamon JE, Ainley DG, Wiens JA, Morgan K, Ballance LT, Stralberg D (2011) Where the wild things are: predicting hotspots of seabird aggregations in the California current system. Ecol Appl 21:2241–2257

    Article  PubMed  Google Scholar 

  • Owens HL, Bentley AC, Peterson AT (2012) Predicting suitable environments and potential occurrences for coelacanths (Latimeria spp.). Biodivers Conserv 21:577–587

    Article  Google Scholar 

  • Panitz H-J, Schubert-Frisius M, Meier-Fleischer K, Lenzen P, Legutke S, Keuler K, Luethi D, Lettenbauer A, Dosio A (2013) CORDEX climate simulations for Africa using COSMO-CLM (CCLM). Geophys Res Abstr 15:1387

    Google Scholar 

  • Papeş M, Gaubert P (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers Distrib 13:890–902

    Article  Google Scholar 

  • Parviainen M, Luoto M, Ryttäri T, Heikkinen RK (2008) Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. J Biogeogr 35:1888–1905

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modelling: a comparison of GARP and Maxent. Ecography 30:550–560

    Article  Google Scholar 

  • Peterson AT, Papes M, Soberon J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Elith J, Graham C, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Purseglove JW (1972) Tropical crops. Monocotyledons, vol. 2. Longman, London, United Kingdom

  • Salm R, Salles NVD, Alonso WJ, Schuck-Paim C (2007) Cross-scale determinants of palm species distribution. Acta Amazonica 37:17–25

    Article  Google Scholar 

  • Sanchez AC, Osborne PE, Haq N (2010) Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agrofor Syst 80:191–201

    Article  Google Scholar 

  • Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz CM, Lira-Noriega A (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecol Model 237:11–22

    Article  Google Scholar 

  • Scoones I (1995) Exploiting heterogeneity: habitat use by cattle in dryland Zimbabwe. J Arid Environ 29:221–237

    Article  Google Scholar 

  • Sosnowska J, Balslev H (2009) American palm ethnomedicine: a meta-analysis. J Ethnobiol Ethnomed 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8(2):e55158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuley P (1995) The palms of Africa. Trendrine Press, Zennor

    Google Scholar 

  • van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Change 122:415–429

    Article  Google Scholar 

  • van Vuuren PD, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Vellak A, Tuvi E, Reier U, Kalamees R, Roosaluste E, Zobel M, Partel M (2009) Past and present effectiveness of protected areas for conservation of naturally and anthropogenically rare plant species. Conserv Biol 23:750–757

    Article  PubMed  Google Scholar 

  • Walther GR, Gritti ES, Berger S, Hickler T, Tang Z, Sykes MT (2007) Palms tracking climate change. Global Ecol Biogeogr 16:801–809

    Article  Google Scholar 

  • Wu M, Smith B, Schurgers G, Lindström J, Rummukainen M, Samuelsson P (2013) Vegetation-climate feedback causes reduced precipitation in CMIP5 regional Earth system model simulation over Africa. Geophys Res Abstr 15:3281

    Google Scholar 

  • Zona S, Henderson A (1989) A review of animal-mediated seed dispersal of palms. Selbyana, pp 6–21

  • Zurell D, Jeltsch F, Dormann CF, Schröder B (2009) Static species distribution models in dynamically changing systems: how good can predictions really be? Ecography 32:733–744

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Abomey-Calavi (Republic of Benin) through the WILD-PALM project and Idea Wild Foundation. We are grateful to Lindsay Campbell from Kansas University (USA), colleagues from the Laboratory of Applied Ecology for numerous debates and discussions, and two anonymous reviewers whose comments greatly improved the quality of the manuscript. We express our thanks to all data providers. The first author also thanks his fellows from the 16th Student Conference on Conservation Sciences (SCCS) for their valuable comments about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigue Idohou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idohou, R., Assogbadjo, A.E., Kakaï, R.G. et al. Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates. Agroforest Syst 91, 527–540 (2017). https://doi.org/10.1007/s10457-016-9955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-9955-6

Keywords

Navigation