Skip to main content
Log in

Harmonic mappings between singular metric spaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we survey the existence, uniqueness and interior regularity of solutions to the Dirichlet problem associated with various energy functionals in the setting of mappings between singular metric spaces. Based on known ideas and techniques, we separate the necessary analytical assumptions to axiomatizing the theory in the singular setting. More precisely, (1) we extend the existence result of Guo and Wenger (Comm Anal Geom 28(1):89–112, 2020) for solutions to the Dirichlet problem of Korevaar–Schoen energy functional to more general energy functionals in purely singular setting. (2) When Y has non-positive curvature in the sense of Alexandrov (NPC), we show that the ideas of Jost (Calc Var Partial Differ Equ 5(1):1–19, 1997) and Lin (Analysis on singular spaces, collection of papers on geometry, analysis and mathematical physics, World Science Publishers, River Edge, pp 114–126, 1997) can be adapted to the purely singular setting to yield local Hölder continuity of solutions of the Dirichlet problem of Korevaar–Schoen and Kuwae–Shioya. (3) We extend the Liouville theorem of Sturm (J Reine Angew Math 456:173–196, 1994) for harmonic functions to harmonic mappings between singular metric spaces. (4) We extend the theorem of Mayer (Comm Anal Geom 6:199–253, 1998) on the existence of the harmonic mapping flow and solve the corresponding initial boundary value problem. Combing these known ideas, with the more or less standard techniques from analysis on metric spaces based on upper gradients, leads to new results when we consider harmonic mappings from \({{\,\mathrm{RCD}\,}}(K,N)\) spaces into NPC spaces. Similar results for the Dirichlet problem associated with the Kuwae–Shioya energy functional and the upper gradient functional are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By the same reasoning, one can show that the strongly rectifiable metric spaces introduced in [26] has property \({{\mathcal {B}}}\). Since we do not know any example other than \({{\,\mathrm{RCD}\,}}(K,N)\) spaces that is strongly rectifiable, we shall not consider these spaces in this article.

References

  1. Alber, S.I.: On \(n\)-dimensional problem in the calculus of variations in the large. Sov. Math. Dokl. 5, 700–704 (1964)

  2. Alber, S.I.: Spaces of mappings into a manifold with negative curvature. Sov. Math. Dokl. 9, 6–9 (1967)

    Google Scholar 

  3. Alexandrov, A.D.: Über eine Verallgemeinerung der Riemannschen Geometrie. Schr. Forschungsinst. Math. 1, 33–84 (1957). ((German))

    MathSciNet  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43(1), 339–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestovskij, V.N., Nikolaev, I.G.: Multidimensional generalized Riemannian spaces. In: Geometry, IV, 165–243, 245–250, Encyclopaedia Mathematical Sciences, Vol. 70, Springer, Berlin (1993)

  8. Biroli, M., Mosco, U.: A Saint–Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl. 4(169), 125–181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17. European Mathematical Society (EMS), Zürich (2011)

    Book  MATH  Google Scholar 

  10. Björn, A., Björn, J., Latvala, V.: The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces. J. Anal. Math. 135(1), 59–83 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

  12. Capogna, L., Lin, F.-H.: Legendrian energy minimizers. I. Heisenberg group target. Calc. Var. Partial Differential Equations 12(2), 145–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, S.Y.: Liouville theorem for harmonic maps, Geometry of the Laplace operator (Proceedings of the Symposium Pure Mathematics, Univercity of Hawaii, Honolulu, Hawaii, 1979), pp. 147–151, XXXVI. American Mathematicla Society, Providence (1980)

  14. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, J.Y.: On energy minimizing mappings between and into singular spaces. Duke Math. J. 79, 77–99 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daskalopoulos, G., Mese, C.: Harmonic maps from a simplicial complex and geometric rigidity. J. Differential Geom. 78(2), 269–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daskalopoulos, G., Mese, C.: Harmonic maps between singular spaces I. Comm. Anal. Geom. 18(2), 257–337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eells, J., Fuglede, B.: Harmonic Maps Between Riemannian Polyhedra. With a preface by M. Gromov, Cambridge Tracts in Mathematics, vol. 142. Cambridge University Press, Cambridge (2001)

  19. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fuglede, B.: Hölder continuity of harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature. Calc. Var. Partial Differential Equations 16(4), 375–403 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fuglede, B.: Dirichlet problems for harmonic maps from regular domains. Proc. London Math. Soc. (3) 91(1), 249–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fuglede, B.: Harmonic maps from Riemannian polyhedra to geodesic spaces with curvature bounded from above. Calc. Var. Partial Differential Equations 31(1), 99–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. In: de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (1994)

  24. Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math. 148, 31–46 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Giaquinta, M., Giusti, E.: The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11(1), 45–55 (1984)

  26. Gigli, N., Tyulenev, A.: Korevaar–Schoen’s energy on strongly rectifiable spaces, preprint (2020)

  27. Gregori, G.: Sobolev spaces and harmonic maps between singular spaces. Calc. Var. Partial Differential Equations 7, 1–18 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gromov, M., Schoen, R.: Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. No. 76, 165–246 (1992)

  29. Guo, C.-Y., Wenger, S.: Area minimizing discs in locally non-compact spaces. Comm. Anal. Geom. 28(1), 89–112 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hamilton, R.S.: Harmonic Maps of Manifolds with Boundary. Lecture Notes in Mathematics, vol. 471. Springer, Berlin (1975)

    MATH  Google Scholar 

  31. Hartman, P.: On homotopic harmonic maps. Canad. J. Math. 19, 673–687 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged Republication of the 1993 Original. Dover, Mineola (2006)

    MATH  Google Scholar 

  33. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs, vol. 27. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  35. Hildebrandt, S., Jost, J., Widman, K.O.: Harmonic mappings and minimal submanifolds. Invent. Math. 62(2), 269–298 (1980/1981)

  36. Hildebrandt, S., Kaul, H., Widman, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138(1–2), 1–16 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, J.-C.: Some Problems of Nonlinear Analysis on Alexandrov Spaces, PhD thesis, Sun Yat-sen University (2016)

  38. Huang, J.-C., Zhang, H.-C.: Harmonic maps between Alexandrov spaces. J. Geom. Anal. 27(2), 1355–1392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ishizuka, W., Wang, C.Y.: Harmonic maps from manifolds of \(L^\infty\)-Riemannian metrics. Calc. Var. Partial Differential Equations 32(3), 387–405 (2008)

  40. Jiang, R.: Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal. 266(3), 1373–1394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differential Equations 2(2), 173–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jost, J.: Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70(4), 659–673 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jost, J.: Generalized Harmonic Maps Between Metric Spaces, Geometric Analysis and the Calculus of Variations, pp. 143–174. International Press, Cambridge (1996)

    MATH  Google Scholar 

  44. Jost, J.: Generalized Dirichlet forms and harmonic maps. Calc. Var. Partial Differential Equations 5(1), 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jost, J.: Nonpositive Curvature: Geometric and Analytic Aspects. Lectures in Mathematics ETH Zürich, Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  46. Jost, J., Meier, M.: Boundary regularity for minima of certain quadratic functionals. Math. Ann. 262(4), 549–561 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jost, J.: Nonlinear Dirichlet forms. In: Jost, J., Kendll, W., Mosco, U., Röckner, M., Sturm, K.-T. (Eds.) New Directions in Dirichlet Forms, pp. 1-47. International Press/AMS (1998)

  48. Kilpeläinen, T., Malý, J.: Supersolutions to degenerate elliptic equation on quasi open sets. Comm. Partial Differential Equations 17(3–4), 371–405 (1992)

    MathSciNet  MATH  Google Scholar 

  49. Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscripta Math. 105(3), 401–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Korevaar, N.J., Schoen, R.: Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1(3–4), 561–659 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131(1), 1–17 (1998)

    MathSciNet  MATH  Google Scholar 

  52. Koskela, P., Rajala, K., Shanmugalingam, N.: Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces. J. Funct. Anal. 202(1), 147–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Koskela, P., Shanmugalingam, N., Tyson, J.T.: Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar and Schoen. Potential Anal. 21(3), 241–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Koskela, P., Zhou, Y.: Geometry and analysis of Dirichlet forms. Adv. Math. 231(5), 2755–2801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kuwae, K., Shioya, T.: Sobolev and Dirichlet spaces over maps between metric spaces. J. Reine Angew. Math. 555, 39–75 (2003)

    MathSciNet  MATH  Google Scholar 

  56. Kuwae, K., Sturm, K.-T.: On a Liouville type theorem for harmonic maps to convex spaces via Markov chains. In: Proceedings of RIMS Workshop on Stochastic Analysis and Applications, pp. 177–191, RIMS Kokyuroku Bessatsu, B6. Res. Inst. Math. Sci. (RIMS), Kyoto (2008)

  57. Lin, F.-H.: Analysis on Singular Spaces, Collection of Papers on Geometry, Analysis and Mathematical Physics, pp. 114–126. World Sci. Publ, River Edge (1997)

    Google Scholar 

  58. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lytchak, A., Wenger, S.: Regularity of harmonic discs in spaces with quadratic isoperimetric inequality. Calc. Var. Partial Differential Equations 55(4), 9819 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51. American Mathematical Society, Providence (1997)

  61. Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom. 6, 199–253 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Morrey, C.B.: The problem of plateau on a Riemannian manifold. Ann. Math. 2(49), 807–851 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  63. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differential Equations 44(3–4), 477–494 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differential Geom. 17(2), 307–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  65. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom. 18(2), 253–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  66. Schoen, R., Yau, S.-T.: Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv. 51(3), 333–341 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  67. Schoen, R., Yau, S.-T.: Lectures on Harmonic Maps, Conference Proceedings and Lecture Notes in Geometry and Topology. II. International Press, Cambridge (1997)

  68. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. Shanmugalingam, N.: Harmonic functions on metric spaces. Illinois J. Math. 45(3), 1021–1050 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  70. Shi, Y.-G.: A partial regularity result of harmonic maps from manifolds with bounded measurable Riemannian metrics. Comm. Anal. Geom. 4(1–2), 121–128 (1996)

    MathSciNet  MATH  Google Scholar 

  71. Sturm, K.-T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

  72. Sturm, K.-T.: Diffusion processes and heat kernels on metric spaces. Ann. Probab. 26(1), 1–55 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sturm, K.-T.: Nonlinear Markov operators associated with symmetric Markov kernels and energy minimizing maps between singular spaces. Calc. Var. 12, 317–357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sturm, K.-T.: Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab. 30, 1195–1222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  75. Sturm, K.-T.: A semigroup approach to harmonic maps. Potential Anal. 23(3), 225–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sturm, K.-T.: On the geometry of metric measure spaces, I, II. Acta Math. 196(1), 26 (2006)

    MathSciNet  Google Scholar 

  77. Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25(7), 659–670 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  78. Zhang, H.-C., Zhong, X., Zhu, X.-P.: Quantitative gradient estimates for harmonic maps into singular spaces. Sci. China Math. 62(11), 2371–2400 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  79. Zhang, H.-C., Zhu, X.-P.: Lipschitz continuity of harmonic maps between Alexandrov spaces. Invent. Math. 211(3), 863–934 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhang, H.-C., Zhu, X.-P.: Regularity of Harmonic Maps on Alexandrov Spaces, preprint (2016)

Download references

Acknowledgements

The author would like to thank Prof. Yau Shing-Tung for his insightful comments on the theory of harmonic mappings and for his encouragement on developing the theory in the singular space setting during the 7th ICCM in Beijing 2016, which is the main motivation of this paper. He is grateful to Prof. Jost for kindly sharing his papers [41, 44] and for his valuable comments on the background of harmonic mappings, to Prof. Chen for kindly sharing his paper [15], and to Profs. Zhang and Zhu for their interest in this work and for kindly sharing the references [37, 38, 80]. C.-Y. Guo was supported by Swiss National Science Foundation Grant 175985 and the Qilu funding of Shandong University (No. 62550089963197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yu Guo.

Additional information

Dedicated to Professor Pekka Koskela on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, CY. Harmonic mappings between singular metric spaces. Ann Glob Anal Geom 60, 355–399 (2021). https://doi.org/10.1007/s10455-021-09779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09779-0

Keywords

Mathematics Subject Classification

Navigation