Skip to main content

Advertisement

Log in

Diversity of airborne mycofloral abundance and allergenic fungal spores of Enugu North, Nigeria

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Airborne mycofloral spores are important part of the fungal inocula responsible for various infections, decays and allergies in the environment. Unfortunately, the diversity, abundance and rhythm of seasonal occurrence are poorly known and studied in this part of the tropics. The aims of this study were to ascertain the airborne fungal spore diversity and their monthly and seasonal abundance at the different locations. The influence of some meteorological factors on 18 most abundant and fungal spore genera was under studied. The study was conducted in Enugu North using modified Tauber Traps at locations differing in urbanization for a period of 12 months. The results showed that 49 airborne fungal spore genera were identified which varied in abundance across the seasons, months and locations. The highest airborne fungal spore abundance and diversity were recorded during the rainy season, and the majority of the airborne spore genera had their peak frequencies in October, July and March. The highest spore abundance was recorded in Adani, but majority of the spore diversity had their maximum frequency of occurrence at Enugu Ezike and Adani. High fungal spore diversity and abundance were recorded more in higher-altitude locations, especially the most frequent and abundant airborne fungal spore genera such as Nigrospora, Endophragmiella, Ustilago, Botryodiplodia, Pithomyces and Venturia. Statistically, there were significant differences (p < 0.05) in the abundance of airborne fungal spores at both the locations and months. Spearman’s correlation analysis showed that the abundance of spore genera of Cladosporium, Alternaria, Endophragmiella, Torula, Uromyces and Venturia had significant (p < 0.05) correlation relationship with meteorological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo, M., Steadman, J. R., & Rosa, J. C. (2013). Uromyces appendiculatus in Honduras: Pathogen diversity and resistance screening. Plant Disease, 97(5), 652–661.

    Article  Google Scholar 

  • Adhikari, A., Sen, M. M., Gupta-Bhattacharya, S., & Chanda, S. (2004). Volumetric assessment of airborne fungi in two sections of a rural indoor dairy cattle shed. Environment International, 29, 1071–1078. https://doi.org/10.1016/S0160-4120(03)00103-X.

    Article  Google Scholar 

  • Agwu, C. O. C. (1997). Modern pollen rain in Nsukka: An indicator of the vegetation of Nsukka plateau. WurzBurger Geographische Arbeiten, 92, 97–116.

    Google Scholar 

  • Agwu, C. O. C., Njokuocha, R. C., & Mezue, O. (2004). The study of airborne pollen and spores circulating at “head level” in Nsukka environment. Bio-Research, 2, 7–14.

    Google Scholar 

  • Agwu, C. O. C., & Osibe, E. E. (1992). Airborne palynomorphs of Nsukka during the months of February–April, 1990. Nigerian Journal of Botany, 5, 177–185.

    Google Scholar 

  • Akram, A., Anjum, T., Ahmad, A., & Moeen, R. (2014). First report of Curvularia lunata causing leaf spots on Sorghum bicolor from Pakistan. Plant Disease, 98(7), 1007.3. https://doi.org/10.1094/PDIS-1213-1291-PDN.

    Article  Google Scholar 

  • Aliyu, S. S., & Gambo, A. (2014). Isolation and identification of airborne fungal spores and fragments in buildings within Usmanu Danfodiyo University Sokoto, Nigeria. Aceh International Journal of Science and Technology, 3(2), 67–72. https://doi.org/10.13170/aijst.0302.03.

    Article  Google Scholar 

  • Allitt, U. (1986). Identity of airborne hyaline, one-septate ascospores and their relation to inhalant allergy. Transactions of the British Mycological Society, 87, 147–154.

    Article  Google Scholar 

  • Almaguer, M., Aira, M.-J., Rodriguez-Rajo, F. J., Fernandez-Gonzalez, M., & Rojas-Flores, T. L. (2015). Thirty-four identifiable airborne fungal spores in Havana, Cuba. Annals of Agricultural and Environmental Medicine, 22(2), 215–220. https://doi.org/10.5604/12321966.1152068.

    Article  Google Scholar 

  • Ataygul, E., Celenk, S., Canitez, Y., Bicakci, A., Malyer, H., & Sapan, N. (2007). Allergenic fungal spore concentrations in the atmosphere of Bursa, Turkey. Journal of Biodiversity and Environmental Sciences, 1(2), 73–79.

    Google Scholar 

  • Awad, A. H. (2005). Vegetation: A source of air fungal bio-contaminant. Aerobiologia, 21, 53–61.

    Article  Google Scholar 

  • Barilli, E., Moral, A., Sillero, J. C., & Rubiales, D. (2012). Clarification on rust species potentially infecting pea (Pisumsativum L.) crop and host range of Uromycespisi (Pers) Wint. Crop Protection, 37, 65–70.

    Article  Google Scholar 

  • Burch, M., & Levetin, E. (2002). Effects of meteorological conditions on spore plumes. International Journal of Biometeorology, 46, 107–117. https://doi.org/10.1007/s00484-002-0127-1.

    Article  CAS  Google Scholar 

  • Burnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed., p. 218). Minnesota: APS Press.

    Google Scholar 

  • Bush, R. K., & Prochnau, J. J. (2004). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113, 227–234.

    Article  Google Scholar 

  • Calderon, C., Lacey, J., MacCartney, H. A., & Rosa, I. (1995). Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana, 34, 260–268.

    Article  Google Scholar 

  • Carter, E., & Boudreaux, C. (2004). Tatal cerebral phaeohyphomycosis due to Curvularia lunata in an immunocompetent patient. Journal of Clinical Microbiology, 42(11), 5419–5423. https://doi.org/10.1128/JCM.42.11.5419-5423.2004.

    Article  Google Scholar 

  • Chairin, T., Pornsuriya, C., Thaochan, N., & Sunpapao, A. (2017). Corynespora casiicola causes leaf spot disease of lettuce (Lactuca sativa) cultivated in hydroponic systems in Thailand. Australasian Plant Disease Notes, 12, 16. https://doi.org/10.1007/s/3314-017-0241-X.

    Article  Google Scholar 

  • Chakraborty, P., Gupta-Bhattacharya, S., Chowdhury, I., Majumdar, M. R., & Chanda, S. (2001). Differences in concentrations of allergenic pollens and spores at different heights on an agricultural farm in West Bengal, India. Annals Agricultural and Environmental Medicine, 8, 123–130.

    CAS  Google Scholar 

  • Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19, 191–199.

    Article  Google Scholar 

  • Da Cunha, K. C., Sutton, D. A., Gene, J., Cano, J., Capilla, J., Madrid, H., et al. (2014). Pithomyces species (Montagnulaceae) from clinical specimens: Identification and antifungal susceptibility profiles. Medical Mycology, 52(7), 748–757. https://doi.org/10.1093/mmy/myu044.

    Article  CAS  Google Scholar 

  • Damialis, A., & Gioulekas, D. (2006). Airborne allergic fungal spores and meteorological factors in Greece: Forecasting possibilities. Grana, 45, 122–129. https://doi.org/10.1080/00173130600601005.

    Article  Google Scholar 

  • Damialis, A., Kaimakamis, E., Konoglou, M., Akritidis, I., Traidl-Hoffmann, C., & Gioulekas, D. (2017). Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: How high can they fly? Scientific Reports. https://doi.org/10.1038/srep44535.

    Article  Google Scholar 

  • Ebner, M. R., Haselwandter, K., & Frank, A. (1989). Seasonal fluctuations of airborne fungal allergens. Mycological Research, 92, 170–176.

    Article  Google Scholar 

  • Essien, B. C., Taiga, A., Suleiman, M. N., Idachaba, S. O., Aniama, S. O., & Edegbo, E. (2013). A study of airborne fungal spores of Anyiagba, Kogi State, Nigeria. American Journal of Biomedical and Life Sciences, 1(4), 70–74.

    Article  Google Scholar 

  • Fernandez, D., Valencia, R. M., Molnar, T., Vega, A., & Sagues, E. (1998). Daily and seasonal variations of Alternaria and Cladosporium airborne spores in Leon (north-west, Spain). Aerobiologia, 14, 215–220.

    Article  Google Scholar 

  • Friesen, T. L., De Wolf, E. D., & Francl, L. J. (2001). Source strength of wheat pathogens during combine harvesting. Aerobiology, 17, 293–299.

    Article  Google Scholar 

  • Gioulekas, D., Damialis, A., Papakosta, D., Spieksma, F. T. M., Giouleka, P., & Patakas, D. (2004). Allergenic fungal spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. Journal of Investigational Allergology and Clinical Immunology, 14, 225–231.

    CAS  Google Scholar 

  • Grinn-Gofron, A. (2008). The variation in spore concentrations of selected fungal taxa associated with weather conditions in Szczecin, Poland, 2004–2006. Grana, 47, 139–146. https://doi.org/10.1080/00173130802091385.

    Article  Google Scholar 

  • Grinn-Gofron, A., & Bosiacka, B. (2015). Effect of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia, 31, 63–72. https://doi.org/10.1007/s10453-014-9347-1.

    Article  Google Scholar 

  • Grinn-Gofron, A., Bosiacka, B., Bednarz, A., & Wolski, T. (2017). A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia. https://doi.org/10.1007/s10453-017-9493-3.

    Article  Google Scholar 

  • Hall, S. A. (1994). Modern pollen influx in tallgrass and shortgrass prairies, southern Great Plains, USA. Grana, 33, 321–326.

    Article  Google Scholar 

  • Hasnain, S. M. (1993). Influence of meteorological factors on the air spora. Grana, 32(3), 184–188. https://doi.org/10.1080/00173139309428955.

    Article  Google Scholar 

  • Hernandez-Trejo, F., Munoz-Rodriguez, A. F., Tormo-Molina, R., & Silva-Palacios, I. (2012). Airborne ascospores in Merida (SW Spain) and effect of rain and other meteorological parameters on their concentration. Aerobiologia, 28(2), 13–26. https://doi.org/10.1007/s10453-011-9207-1.

    Article  Google Scholar 

  • Herrero, B., Fombella-Blanco, M. A., Fernandez-Gonzalez, D., & Valencia-Barrera, R. M. (1996). The role of meteorological factors in determining the annual variation of Alternaria and Cladosporium spores in the atmosphere of Palencia, 1990–1992. International Journal of Biometeorology, 39, 139–142.

    Article  Google Scholar 

  • Hossain, M. S., & Pasha, M. K. (2012). Airborne fungal and pteridophytic spores in Chittagong University Campus, Chittagong. Journal of Asiatic Society of Bangladesh, Science, 38(1), 119–124.

    Article  Google Scholar 

  • Huang, H. K., Liu, C. E., Liou, J. H., Hsiue, H. C., Hsiao, C. H., & Hsueh, P. R. (2010). Subcutaneous infection caused by Corynespora cassiicola, a plant pathogen. Journal of Infection, 60(2), 188–190. https://doi.org/10.1016/j.jinf.2009.11.002.

    Article  Google Scholar 

  • Ianovici, N., Maria, C., Radutoiu, M. N., Hanis, A., & Tudorica, D. (2013). Variation in airborne fungal spore concentrations in four different microclimate regions in Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(2), 450–457.

    Article  Google Scholar 

  • Ingold, C. T. (1971). Fungal spores. Their liberation and dispersal. Oxford: Clarendon Press.

    Google Scholar 

  • Jadon, K. S., & Shah, R. (2012). Effects of Drechslera bicolor infection on physiology of bell pepper. Journal of Plant Pathology and Microbiology, 3, 126. https://doi.org/10.4172/2157-7471.1000126.

    Article  CAS  Google Scholar 

  • Jedryczka, M. (2014). Aeromycology: Studies of fungi in aeroplankton. Folia Biologica et Oecologica, 10, 18–26. https://doi.org/10.2478/fobio-2014-003.

    Article  Google Scholar 

  • Kahmann, R., Steioberg, G., Basse, C., Feldbrugge, M., & Kamper, J. (2000). Ustilagomaydis, the causative agent of corn smut disease. In J. W. Kronstad (Ed.), Fungal pathology (pp. 347–371). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kamaluddeen, S. S., & Abhilasha, A. L. (2013). A new blight disease of rice caused by Curvularia lunata from Utter Pradesh. International Journal of Agricultural Science and Research, 3(5), 13–16.

    Google Scholar 

  • Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia, 22, 169–176.

    Article  Google Scholar 

  • Katial, R., Zhang, Y., Jones, R., & Dyer, P. (1997). Atmospheric mold spore counts in relation to meteorological parameters. International Journal of Biometeorology, 41, 17–22. https://doi.org/10.1007/s004840050048.

    Article  CAS  Google Scholar 

  • Khattab, A., & Levetin, E. (2008). Effect of sampling height on the concentration of airborne fungal spores. Annals of Allergy, Asthma & Immunology, 101(5), 529–534. https://doi.org/10.1016/S1081-1206(10)60293-1.

    Article  Google Scholar 

  • Li, L., Lei, C., & Liu, Z.-G. (2010). Investigation of airborne fungi at different altitudes in Shenzhen University. Natural Science, 2(5), 506–514. https://doi.org/10.4236/ns.2010.25063.

    Article  Google Scholar 

  • McNeil, J. C., & Palazzi, D. L. (2012). Ustilago as a cause of fungal peritonitis: Case report and review of the literature. Journal of the Pediatric Infectious Disease Society, 1(4), 337–339. https://doi.org/10.1093/jpids/pis043.

    Article  Google Scholar 

  • Meri, A., Schneider, P., Wally, V., Breitenbach, M., & Simon-Nobbe, B. (2003). Sensitization to fungi: Epidemiology, comparative skin tests and ige reactivity of fungal extracts. Clinical and Experimental Allergy, 33, 1429–1438.

    Article  Google Scholar 

  • Molina, A., Angulo-Romero, J., Garcia-Pantaleon, I., Comtois, P., & Vilches, E. (1998). Preliminary statistical modeling of the presence of two conidial types of Cladosporium in the atmosphere of Cordoba, Spain. Aerobiologia, 14, 229–234. https://doi.org/10.1007/BF02694211.

    Article  Google Scholar 

  • Moore-Landecker, E. (1990). Fundamentals of the fungi (3rd ed.). Englewood cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Njokuocha, R. C., & Agwu, C. O. C. (2007). Airborne fungal spores in Nsukka municipality. Nigerian Journal of Botany, 20(2), 349–359.

    Google Scholar 

  • Njokuocha, R. C., Agwu, C. O. C., & Okezie, C. E. A. (2017). Effects of weather conditions on selected airborne fungal spores in the southern part of the state of Enugu, Nigeria. Grana, 54(4), 263–272. https://doi.org/10.1080/00173134.2016.1248859.

    Article  Google Scholar 

  • Njokuocha, R. C., & Osayi, E. E. (2005). Airborne pollen and spore survey in relation to allergy and plant pathogens in Nsukka, Nigeria. Bio-Research, 3(1), 77–84.

    Google Scholar 

  • Njokuocha, R. C., & Ukeje, H. O. (2006). The study of airborne pollen precipitation in the University of Nigeria (Nsukka) botanic garden. Bio-Research, 4(2), 88–93.

    Article  Google Scholar 

  • Nowicki, M., Nowakowska, M., Niezgoda, A., & Kozik, E. (2012). Alternaria black spot of crucifers: Symptoms, importance of disease and perspectives resistance breeding. Vegetables Crops Research Bulletin, 76, 5–19.

    Google Scholar 

  • Ogden, E. U., Raynor, G. S., Hayes, J. V., Lewis, D. M., & Haines, J. H. (1974). Manual for sampling airborne pollen (p. 182). New York: Haffner Press.

    Google Scholar 

  • Okten, S. S., Asan, A., Tungan, Y., & Ture, M. (2005). Airborne fungal concentration in east patch of Edirne City (Turkey) in autumn using two sampling methods. Trakya University Journal of Science, 6(1), 97–106.

    Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanization level. International Journal of Biometeorology, 53, 61–73. https://doi.org/10.1007/s00484-008-0191-2.

    Article  CAS  Google Scholar 

  • Oluma, H. O., & Amuta, E. U. (1999). Corynespora cassicola leaf spot of pawpaw (Carica papaya L.) in Nigeria. Mycopathologia, 145(1), 23–27.

    Article  CAS  Google Scholar 

  • Ozomen, O., Sahinduran, S., Haligur, M., & Albay, M. K. (2008). Clinopathological studies of facial eczema outbreak in sheep in southwest Turkey. Tropical Animal Health Production, 40, 545–551.

    Article  Google Scholar 

  • Pastor, F. J., & Guarro, J. (2008). Alternaria infections: Laboratory diagnosis and relevant clinical features. Clinical Microbiology and Infections, 14, 734–746.

    Article  CAS  Google Scholar 

  • Pepeljnjak, S., & Segvic, M. (2003). Occurrence of fungi in air and on plants in vegetation of different climatic regions in Croatia. Aerobiologia, 19, 11–19. https://doi.org/10.1023/A:1022693032075.

    Article  Google Scholar 

  • Pernezny, K., Stoffella, P., Collins, J., Carroll, A., & Beaney, A. (2003). Control of target spot of tomato with fungicide systematic acquired resistance activators, and a biological agent. Plant Protection Science, 38(3), 81–88. https://doi.org/10.17221/4855-PPS.

    Article  Google Scholar 

  • Plummer, K. M., & Templeton, M. D. (2011). Venturia inaequalis: The causal agent of apple scab. Molecular Plant Pathology, 12(2), 105–122.

    Article  Google Scholar 

  • Robert, K., Bush, M. D., Jay, J., & Prochnau, M. D. (2003). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113(2), 227–234. https://doi.org/10.1016/j.jaci.2003.11.023.

    Article  Google Scholar 

  • Rodriguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(4), 497–507. https://doi.org/10.1017/S0953756204001777.

    Article  Google Scholar 

  • Rolston, K. V., Hopfer, R. L., & Larson, D. L. (1985). Infections caused by Drechslera species: Case report and review of literature. Review of Infectious Disease, 7, 525–529.

    Article  CAS  Google Scholar 

  • Sabariego, C., de la Guardia, Diaz, & Alba, F. (2000). The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44, 1–5.

    Article  CAS  Google Scholar 

  • Sadys, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2006). Comparison of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia. https://doi.org/10.1007/s0453-016-9436-4.

    Article  Google Scholar 

  • Sakiyan, N., & Inceoglu, O. (2003). Atmospheric concentrations of Cladosporium Link and Alternaria Nees spores in Ankara and effects of meteorological factors. Turkish Journal of Botany, 27, 77–81.

    Google Scholar 

  • Sandeep, N. G., Adinarayana, M., Kumar, M. V., & Madhumathi, J. (2016). Effects of weather parameters on Corynespora leaf spot disease severity of Blackgram. IOSR Journal of Agriculture and Veterinary Science, 9(2 version II), 8–14. https://doi.org/10.9790/2380-09220814.

    Article  Google Scholar 

  • Soylu, S., Dervis, S., & Soylu, E. M. (2011). First report of Nigrospora sphaerica causing leaf spots of Chinese wisteria: A new host of the pathogen. Plant Disease, 95(2), 219. https://doi.org/10.1094/PDIS-10-10-0770.

    Article  CAS  Google Scholar 

  • Stepalska, D., & Wolek, J. (2005). Variation in fungal spore concentration of selected taxa associated to weather condition in Cracow, Poland, in 1997. Aerobiologia, 21, 43–52.

    Article  Google Scholar 

  • Sunder, S., Singh, R., Dodan, D. S., & Mehla, D. S. (2005). Effect of different nitrogen levels on brown spot (Drechslera oryzae) of rice and its management through host resistance and fungicides. Plant Disease Research, 20(2), 111–114.

    Google Scholar 

  • Tóth, B., Csősz, M., Dijksterhuis, J., Frisvad, J. C., & Varga, J. (2007). Pithomyces chartarum as a pathogen of wheat. Journal of Plant Pathology, 89(3), 405–408.

    Google Scholar 

  • Troutt, C., & Levetin, E. (2001). Correlation of spring spore concentration and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45, 64–74.

    Article  CAS  Google Scholar 

  • Wright, E. R., Folgado, M., Rivera, M. C., Crelier, A., Vasquez, P., & Lopez, S. E. (2008). Nigrospora sphaerica causing leaf spot and twig and shoot blight on blueberry. A new host of the pathogen. Plant Disease, 92(1), 171. https://doi.org/10.1094/pdis-92-1-0171b.

    Article  CAS  Google Scholar 

  • Yang, H., Zang, Y., Yuan, Y., Tang, J., & Chen, X. (2012). Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata. BMC Evolutionary Biology, 12(1), 50. https://doi.org/10.1186/1471-2148-12-50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald Chukwuemeka Njokuocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njokuocha, R.C., Osayi, E.E. & Ikegbunam, C.N. Diversity of airborne mycofloral abundance and allergenic fungal spores of Enugu North, Nigeria. Aerobiologia 35, 177–194 (2019). https://doi.org/10.1007/s10453-018-9550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9550-6

Keywords

Navigation