Skip to main content
Log in

Collection of airborne bacteria and yeast through water-based condensational growth

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

One limitation in air sampling of airborne microorganisms is their inactivation by forceful impaction and/or dehydration during the collection process. Proper inhalation risk assessments require proof of viability, as non-viable microorganisms cannot cause infectious diseases. In this study, laboratory-generated aerosols of a vegetative bacterium (E. coli) or yeast (S. kudriavzevii) were collected by a laminar-flow water-based condensational “growth tube collector (GTC),” and the GTC’s collection efficiencies were compared with those using an industry standard BioSampler. Collection efficiencies resulting from two types of collection media, phosphate-buffered saline (PBS) and nutrient media (Nutrient Broth, NB, for E. coli, and Yeast Tryptone Glucose Broth, YTGB, for S. kudriavzevii) were also assessed. Both the GTC and the BioSampler performed equally when PBS was used as the collection medium for E. coli, whereas more viable E. coli cells were collected in the GTC than the BioSampler with NB. For S. kudriavzevii, the GTC outperformed the BioSampler using either PBS or YTGB. This is likely because aerosolized E. coli cells can better survive impaction than S. kudriavzevii under the conditions used, and the BioSampler has a much higher collection efficiency for particles in the size range of single-celled E. coli than S. kudriavzevii. Moreover, the GTC had a detection limit one order of magnitude lower for yeast aerosols compared with that of the BioSampler. These results indicate that the GTC is a promising device for sampling viable aerosolized gram-negative bacteria and yeast, as it is less damaging to these types of microorganisms during the collection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, R. I., Bhangar, S., Pasut, W., Arens, E. A., Taylor, J. W., Lindow, S. E., et al. (2015). Chamber bioaerosol study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS ONE, 10(5), e0128022.

    Article  CAS  Google Scholar 

  • Agranovski, I. E., Agranovski, V., Reponen, T., Willeke, K., & Grinshpun, S. A. (2002). Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmospheric Environment, 36(5), 889–898.

    Article  CAS  Google Scholar 

  • Albrecht, A., Witzenberger, R., Bernzen, U., & Jackel, U. (2007). Detection of airborne microbes in a composting facility by cultivation based and cultivation-independent methods. Annals of Agricultural and Environmental Medicine, 14(1), 81–85.

    Google Scholar 

  • Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76(5), 471–484.

    CAS  Google Scholar 

  • Burge, H. A. (1985). Fungus allergens. Clinical Reviews in Allergy and Immunology, 3(3), 319–329.

    Article  CAS  Google Scholar 

  • Burton, N. C., Adhikari, A., Grinshpun, S. A., Hornung, R., & Reponen, T. (2005). The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. Journal of Environmental Monitoring, 7(5), 475–480.

    Article  CAS  Google Scholar 

  • Burton, N. C., Grinshpun, S. A., & Reponen, T. (2007). Physical collection efficiency of filter materials for bacteria and viruses. Annals of Occupational Hygiene, 51(2), 143–151.

    CAS  Google Scholar 

  • Buttner, M. P., & Stetzenbach, L. D. (1991). Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae. Applied and Environmental Microbiology, 57(4), 1268–1270.

    CAS  Google Scholar 

  • Castle, G. S. P., Inculet, I. I., & Burgess, K. I. (1969). Ozone generation in positive corona electrostatic precipitators. IEEE Transactions on Industry and General Applications, 4, 489–496.

    Article  Google Scholar 

  • CDC. (2006). Bioterrorism Agents/Diseases. Retrieved from https://emergency.cdc.gov/agent/agentlist.asp. Accessed January 2017.

  • Chang, C. W., Chung, H., Huang, C. F., & Su, H. J. J. (2001). Exposure of workers to airborne microorganisms in open-air swine houses. Applied and Environmental Microbiology, 67(1), 155–161. https://doi.org/10.1128/aem.67.1.155-161.2001.

    Article  CAS  Google Scholar 

  • Chen, T. B. (1993). Aerosol measurement: Principles, techniques, and applications (Vol. Chapter 22). Stamford: International Thomson Publishing, Inc.

    Google Scholar 

  • Choi, J., Kang, M., & Jung, J. H. (2015). Integrated micro-optofluidic platform for real-time detection of airborne microorganisms. Scientific Reports. https://doi.org/10.1038/srep15983.

    Article  Google Scholar 

  • Ding, P.-H., & Wang, C.-S. (2001). Effect of sampling time on the total recovery rate of AGI-30 Impingers for e. coli aerosols. Aerosol and Air Quality Research, 1(1), 31–36.

    Google Scholar 

  • Dungan, R. S., & Leytem, A. B. (2009). Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World Journal of Microbiology & Biotechnology, 25(9), 1505–1518.

    Article  Google Scholar 

  • Dungan, R. S., & Leytem, A. B. (2016). Recovery of culturable Escherichia coli O157:H7 during operation of a liquid-based bioaerosol sampler. Aerosol Science and Technology, 50(1), 71–75.

    Article  CAS  Google Scholar 

  • Durand, K. T. H., Muilenberg, M. L., Burge, H. A., & Siexas, N. S. (2002). Effect of sampling time on the culturability of airborne fungi and bacteria sampled by filtration. Annals of Occupational Hygiene, 46(1), 113–118.

    Google Scholar 

  • Dybwad, M., Skogan, G., & Blatny, J. M. (2014). Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Science and Technology, 48(3), 282–295.

    Article  CAS  Google Scholar 

  • Engelhart, S., Glasmacher, A., Simon, A., & Exner, M. (2007). Air sampling of Aspergillus fumigatus and other thermotolerant fungi: Comparative performance of the Sartorius MD8 airport and the Merck MAS-100 portable bioaerosol sampler. International Journal of Hygiene and Environmental Health, 210(6), 733–739.

    Article  Google Scholar 

  • Fennelly, K. P., Tribby, M. D., Wu, C.-Y., Heill, G. L., Radonovich, L. J., Loeb, J. C., et al. (2015). Collection and measurement of aerosols of viable influenza virus in liquid media in an Andersen cascade impactor. Virus Adaption and Treatment, 7, 1–9.

    Google Scholar 

  • Griffiths, W. D., Stewart, I. W., Reading, A. R., & Futter, S. J. (1996). Effect of aerosolisation, growth phase and residence time in spray and collection fluids on the culturability of cells and spores. Journal of Aerosol Science, 27(5), 803–820.

    Article  CAS  Google Scholar 

  • Grinshpun, S. A., Chang, C. W., Nevalainen, A., & Willeke, K. (1994). Inlet characteristics of bioaerosol samplers. Journal of Aerosol Science, 25(8), 1503–1522.

    Article  CAS  Google Scholar 

  • Gross, M., Kosmowsky, I. J., Lorenz, R., Molitoris, H. P., & Jaenicke, R. (1994). Response of bacteria and fungi to high-pressure stress as investigated by 2-dimensional polyacrylamide. Electrophoresis, 15(12), 1559–1565.

    Article  CAS  Google Scholar 

  • Han, T., & Mainelis, G. (2012). Investigation of inherent and latent internal losses in liquid-based bioaerosol samplers. Journal of Aerosol Science, 45, 58–68.

    Article  CAS  Google Scholar 

  • Hering, S. V., & Stolzenburg, M. R. (2005). A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Science and Technology, 39(5), 428–436.

    Article  CAS  Google Scholar 

  • Hering, S. V., Stolzenburg, M. R., Quant, F. R., Oberreit, D. R., & Keady, P. B. (2005). A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Science and Technology, 39(7), 659–672.

    Article  CAS  Google Scholar 

  • Hogan, C. J., Kettleson, E. M., Lee, M. H., Ramaswami, B., Angenent, L. T., & Biswas, P. (2005). Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology, 99(6), 1422–1434.

    Article  Google Scholar 

  • Kassab, A. S. (2009). Effect of collection method and archiving conditions on the survivability of vegetative and spore forming bacteria. Doctoral dissertation. Texas A&M University, College Station.

  • Kesavan, J., & Sagripanti, J. L. (2015). Evaluation criteria for bioaerosol samplers. Environmental Science-Processes and Impacts, 17(3), 638–645.

    Article  CAS  Google Scholar 

  • Koseki, S., & Yamamoto, K. (2006). Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. International Journal of Food Microbiology, 110(1), 108–111. https://doi.org/10.1016/j.ijfoodmicro.2006.01.039.

    Article  CAS  Google Scholar 

  • Kvitek, D. J., Will, J. L., & Gasch, A. P. (2008). Variations in stress sensitivity and genomic expression in diverse s. cerevisiae isolates. PLoS Genet, 4(10), e1000223.

    Article  CAS  Google Scholar 

  • Lednicky, J., Pan, M., Loeb, J., Hsieh, H., Eiguren-Fernandez, A., Hering, S., et al. (2016). Highly efficient collection of infectious pandemic influenza H1N1 virus (2009) through laminar-flow water based condensation. Aerosol Science and Technology, 50(7), 1–4.

    Article  CAS  Google Scholar 

  • Li, C. S., Hao, M. L., Lin, W. H., Chang, C. W., & Wang, C. S. (1999). Evaluation of microbial samplers for bacterial microorganisms. Aerosol Science and Technology, 30(2), 100–108.

    Article  Google Scholar 

  • Lin, X. J., Reponen, T. A., Willeke, K., Grinshpun, S. A., Foarde, K. K., & Ensor, D. S. (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33(26), 4291–4298.

    Article  CAS  Google Scholar 

  • Lin, X. J., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S. A., & Trunov, M. (2000). Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science and Technology, 32(3), 184–196.

    Article  CAS  Google Scholar 

  • Naumov, G. I., James, S. A., Naumova, E. S., Louis, E. J., & Roberts, I. N. (2000). Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. International Journal of Systematic and Evolutionary Microbiology, 50, 1931–1942.

    Article  CAS  Google Scholar 

  • Nevalainen, A., Willeke, K., Liebhaber, F., Pastuszka, J., Nurge, H., & Henningson, E. (1993). Aerosol measurement: Principles, techniques, and applications (Vol. Chapter 21). Stamford: International Thomson Publishing, Inc.

    Google Scholar 

  • Pan, M., Bonny, T., Loeb, J., Jiang, X., Lednicky, J., Eiguren-Fernandez, A., et al. (2017). Collection of viable aerosolized influenza and other respiratory viruses in a student health care center through water-based condensation growth. mSphere, 2, e00251.

    Article  Google Scholar 

  • Pan, M., Eiguren-Fernandez, A., Hsieh, H., Afshar-Mohajer, N., Hering, S. V., Lednicky, J., et al. (2016). Efficient collection of viable virus aerosol through laminar-flow, water-based condensational particle growth. Journal of Applied Microbiology, 120(3), 805–815.

    Article  CAS  Google Scholar 

  • Prussin, A. J., Vikram, A., Bibby, K. J., & Marr, L. C. (2016). Seasonal dynamics of the airborne bacterial community and selected viruses in a children’s daycare center. PLoS ONE, 11(3), e0151004.

    Article  CAS  Google Scholar 

  • Seshadri, S., Han, T., Krumins, V., Fennell, D. E., & Mainelis, G. (2009). Application of ATP bioluminescence method to characterize performance of bioaerosol sampling devices. Journal of Aerosol Science, 40(2), 113–121.

    Article  CAS  Google Scholar 

  • Sezonov, G., Joseleau-Petit, D., & D’Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology, 189(23), 8746–8749.

    Article  CAS  Google Scholar 

  • Shiloach, J., & Fass, R. (2005). Growing E-coli to high cell density—A historical perspective on method development. Biotechnology Advances, 23(5), 345–357.

    Article  CAS  Google Scholar 

  • Springorum, A. C., Clauss, M., & Hartung, J. (2011). A temperature-controlled AGI-30 impinger for sampling of bioaerosols. Aerosol Science and Technology, 45(10), 1231–1239.

    Article  CAS  Google Scholar 

  • Stewart, S. L., Grinshpun, S. A., Willeke, K., Terzieva, S., Ulevicius, V., & Donnelly, J. (1995). Effect of impact stress on microbial recovery on an agar surface. Applied and Environmental Microbiology, 61(4), 1232–1239.

    CAS  Google Scholar 

  • Stribny, J., Gamero, A., Pérez-Torrado, R., & Querol, A. (2015). Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. International Journal of Food Microbiology, 205, 41–46.

    Article  CAS  Google Scholar 

  • Thorne, P. S., Kiekhaefer, M. S., Whitten, P., & Donham, K. J. (1992). Comparison of bioaerosol sampling methods in barns housing swine. Applied and Environmental Microbiology, 58(8), 2543–2551.

    CAS  Google Scholar 

  • Tille, P. (2013). Bailey & Scott’s diagnostic microbiology-E-book. New York: Elsevier.

    Google Scholar 

  • Tseng, C. C., & Li, C. S. (2005). Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science, 36(5–6), 593–607.

    Article  CAS  Google Scholar 

  • Uhrbrand, K., Schultz, A. C., Koivisto, A. J., Nielsen, U., & Madsen, A. M. (2017). Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant. Water Research, 112, 110–119.

    Article  CAS  Google Scholar 

  • Willeke, K., Lin, X. J., & Grinshpun, S. A. (1998). Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Science and Technology, 28(5), 439–456.

    Article  CAS  Google Scholar 

  • Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2009). Prescott’s principles of microbiology. New York: McGraw-Hill.

    Google Scholar 

  • Xu, Z. Q., Wu, Y., Shen, F. X., Chen, Q., Tan, M. M., & Yao, M. S. (2011). Bioaerosol science, technology, and engineering: Past, present, and future. Aerosol Science and Technology, 45(11), 1337–1349.

    Article  CAS  Google Scholar 

  • Zhen, H. J., Han, T. W., Fennell, D. E., & Mainelis, G. (2013). Release of free DNA by membrane-impaired bacterial aerosols due to aerosolization and air sampling. Applied and Environmental Microbiology, 79(24), 7780–7789.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation Grant number: IDBR-1353423, and by internal funds from Aerosol Dynamics Inc. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yu Wu.

Ethics declarations

Conflict of interest

The underlying water-based condensation growth technology is patented by the employer of two of the authors (S. Hering and A Eiguren-Fernandez), and has been licensed for commercial use in the field of airborne particle collection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, M., Carol, L., Lednicky, J.A. et al. Collection of airborne bacteria and yeast through water-based condensational growth. Aerobiologia 34, 337–348 (2018). https://doi.org/10.1007/s10453-018-9517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9517-7

Keywords

Navigation