Skip to main content
Log in

Influence of salinity on the meiofaunal distribution in a hypersaline lake along the southeast coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study highlights that seasonal salinity variability plays a significant role in meiobenthic distribution with special reference to nematode assemblages. Sediment and water samples were collected from Pulicat Lake, a hypersaline lake along the southeast coast of India during two seasons (Southwest Monsoon (SWM) and Northeast Monsoon (NEM)). Based on the salinity distribution, the lake is categorized into four regions, viz., southern inlet, central region, middle inlet, and northern inlet. Meiobenthic abundance was higher during SWM (226–12,206 Ind/10 cm2) than in NEM (640–10,424 Ind/10 cm2). The meiofaunal abundance was high in the central region during both the seasons, followed by the southern, northern, and middle inlet. The nematode was the dominant meiobenthic group, followed by copepod, polychaete, and foraminifera. Due to high organic matter, the central region was dominated by deposit feeding nematode species like Halalaimus longicaudatus and Terschellingia longicaudata. The southern and northern regions were dominated by free-living nematodes Rhabditis olitoria, Mesorhabditis capitata, Mononochus bastian, Paramononchus sp., Piranchulus sp., and Diploscapter cylindricus. Oncholaimus sp., a hypersaline indicator species, was reported from the middle inlet location. Statistical analysis suggests salinity as a critical parameter for the distribution and diversity of nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request through the Director, National Center for Coastal Research, Ministry of Earth Sciences, Chennai.

References

  • Adão, H., Alves, A. S., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. (2009). Spatial distribution of subtidal nematoda communities along the salinity gradient in southern European estuaries. Acta Oecologica, 35(2), 287–300. https://doi.org/10.1016/J.ACTAO.2008.11.007

    Article  Google Scholar 

  • Alves, A. S., Adão, H., Ferrero, T. J., Marques, J. C., Costa, M. J., & Patrício, J. (2013). Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: The use of nematodes in ecological quality assessment. Ecological Indicators, 24, 462–475. https://doi.org/10.1016/j.ecolind.2012.07.013

    Article  Google Scholar 

  • Alves, A. S., Adão, H., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. (2009). Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). Journal of the Marine Biological Association of the United Kingdom, 89(8), 1529–1540. https://doi.org/10.1017/S0025315409000691

    Article  CAS  Google Scholar 

  • Bassler-Veit, B., Barut, I. F., Meric, E., Avsar, N., Nazik, A., Kapan-Yeşilyurt, S., & Yildiz, A. (2013). Distribution of microflora, meiofauna, and macrofauna assemblages in the hypersaline environment of northeastern aegean sea coasts. Journal of Coastal Research, 29(4), 883–898. https://doi.org/10.2112/JCOASTRES-D-12-00022.1

    Article  Google Scholar 

  • Bevilacqua, S., Fraschetti, S., Musco, L., & Terlizzi, A. (2009). Taxonomic sufficiency in the detection of natural and human-induced changes in marine assemblages: A comparison of habitats and taxonomic groups. Marine Pollution Bulletin, 58(12), 1850–1859. https://doi.org/10.1016/J.MARPOLBUL.2009.07.018

    Article  CAS  Google Scholar 

  • Carrasco, N. K., Perissinotto, R., & Nel, H. A. (2012). Diet of selected fish species in the freshwater-deprived St Lucia Estuary, South Africa, assessed using stable isotopes. Marine Biology Research, 8(8), 701–714. https://doi.org/10.1080/17451000.2012.678855

    Article  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (1999). The taxonomic distinctness measure of biodiversity: Weighting of step lengths between hierarchical levels. Marine Ecology Progress Series, 184, 21–29. https://doi.org/10.3354/MEPS184021

    Article  Google Scholar 

  • Clarke, K.R. & Gorley, R.N. (2006). Primer v6: User manual/tutorial. Primer-E Ltd.

  • Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation. 2nd edition. Primer-E, Plymouth. Plymouth, United Kingdom: PRIMER-E, 172.

  • Danovaro, R., Gambi, C., & Della Croce, N. (2002). Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Research Part i: Oceanographic Research Papers, 49(5), 843–857. https://doi.org/10.1016/S0967-0637(01)00084-X

    Article  CAS  Google Scholar 

  • Day, J. H., & P.E.G. (1968). A monograph on the polychaeta of Southern Africa part 1, Errantia: Part 2, Sedentaria Published by the Trustees of the British Museum (Natural History), London, 1967 Publication no. 656. Pp. viii + 878. Price £15. Journal of the Marine Biological Association of the United Kingdom, 48(3), 836–836. https://doi.org/10.1017/S0025315400019299

  • Deng, J., Paerl, H. W., Qin, B., Zhang, Y., Zhu, G., Jeppesen, E., et al. (2018). Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Science of the Total Environment, 645, 1361–1370. https://doi.org/10.1016/J.SCITOTENV.2018.07.208

    Article  CAS  Google Scholar 

  • Derycke, S., Backeljau, T., Vlaeminck, C., Vierstraete, A., Vanfleteren, J., Vincx, M., & Moens, T. (2007). Spatiotemporal analysis of population genetic structure in Geomonhystera disjuncta (Nematoda, Monhysteridae) reveals high levels of molecular diversity. Marine Biology, 151(5), 1799–1812. https://doi.org/10.1007/S00227-007-0609-0

    Article  Google Scholar 

  • Ezhilarasan, P., Basuri, C. K., Gera, A., Kumaraswami, M., Rao, V. R., & Murthy, M. V. R. (2021). Mesozooplankton distribution in relation to the salinity gradient in a tropical hypersaline lake. Journal of Sea Research, 178, 102138. https://doi.org/10.1016/J.SEARES.2021.102138

    Article  Google Scholar 

  • Fauvel, P. (1953). The fauna of India including Pakistan, Ceylon, Burma and Malaya. Annelida Polychaeta. Indian Press, Allahabad. 12, 507.

  • Fauchald, K., & Jumars, P. A. (1979). The diet of worms: A study of polychaete feeding guilds. http://repository.si.edu/xmlui/handle/10088/3422. Accessed 28 December 2021

  • Ferrero, T. J., Debenham, N. J., & Lambshead, P. J. D. (2008). The nematodes of the Thames estuary: Assemblage structure and biodiversity, with a test of Attrill’s linear model. Estuarine, Coastal and Shelf Science, 3(79), 409–418. https://doi.org/10.1016/J.ECSS.2008.04.014

    Article  Google Scholar 

  • Gera, A., Kumaraswami, M., Ranga Rao, V., Vijay, A., Pandiyarajan, R. S., Ezhilarasan, P., et al. (2021). The Pulicat, a distinctive shallow lagoon: Hypersalinity, thermodynamics and meromixis. ECSS, 252, 107292. https://doi.org/10.1016/J.ECSS.2021.107292

    Article  Google Scholar 

  • Gerdes, G., Krumbein, W. E., & Reineck, H. E. (1985). The depositional record of sandy, versicolored tidal flats (Mellum Island, Southern North Sea). undefined, 55(2), 265–278. https://doi.org/10.1306/212F8698-2B24-11D7-8648000102C1865D

  • Giere, O. (2014). Meiobenthology the microscopic motile fauna of aquatic sediments.

  • Grotzinger, J. P., & Jordan, T. H. (2010). Understanding Earth.

  • Higgins, R. P., & Thiel, H. (1988). Introduction to the study of meiofauna, 488.

  • Hourston, M., Potter, I. C., Warwick, R. M., & Valesini, F. J. (2011). The characteristics of the nematode faunas in subtidal sediments of a large microtidal estuary and nearshore coastal waters differ markedly. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2011.05.022

    Article  Google Scholar 

  • Jeppesen, E., Søndergaard, M., Pedersen, A. R., Jürgens, K., Strzelczak, A., Lauridsen, T. L., & Johansson, L. S. (2007). Salinity induced regime shift in shallow brackish lagoons. Ecosystems, 10(1), 47–57. https://doi.org/10.1007/S10021-006-9007-6

    Article  CAS  Google Scholar 

  • Kaiser, M. J., Atrill, M., Jennins, S., Thomas, D. N., Barnes, D. K. A., Hiddick, J. G., et al. (2011). Marine ecology : Processes, systems and impacts, 528 pp.

  • Kasturirangan, L. (1963). A key for the identification of the more common planktonic Copepoda of Indian coastal waters,. New Delhi,: Council of Scientific & Industrial Research,.

  • Lambshead, P. J. D., Brown, C. J., Ferrero, T. J., Mitchell, N. J., Smith, C. R., Hawkins, L. E., & Tietjen, J. (2002). Latitudinal diversity patterns of deep-sea marine nematodes and organic fluxes: A test from the central equatorial pacific. Marine Ecology Progress Series, 236, 129–135. https://doi.org/10.3354/MEPS236129

    Article  Google Scholar 

  • Leduc, D., Rowden, A. A., Nodder, S. D., Berkenbusch, K., Probert, P. K., Hadfield, M. G., et al. (2014). Unusually high food availability in Kaikoura Canyon linked to distinct deep-sea nematode community. DSRII, 104, 310–318. https://doi.org/10.1016/J.DSR2.2013.06.003

    Article  Google Scholar 

  • Leduc, Daniel, & Pilditch, C. A. (2013). Effect of a physical disturbance event on deep-sea nematode community structure and ecosystem function. undefined, 440, 35–41. https://doi.org/10.1016/J.JEMBE.2012.11.015

  • Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Multivariate Analysis of Ecological Data Using CANOCO. https://doi.org/10.1017/CBO9780511615146

    Article  Google Scholar 

  • Magalhães, A., Pereira, L. C. C., & da Costa, R. M. (2015). Relationships between copepod community structure, rainfall regimes, and hydrological variables in a tropical mangrove estuary (Amazon coast, Brazil). Helgoland Marine Research, 69(1), 123–136. https://doi.org/10.1007/S10152-014-0421-4/FIGURES/7

    Article  Google Scholar 

  • McCave I.N., Syvitski J.P.M., (1991) Principles and methods of geological particle size analysis. principles, methods and application of particle size analysis, Cambridge University Press. 368 pp.

  • Mistri, M., Cason, E., Munari, C., & Rossi, R. (2004). Italian Journal of Zoology. Disturbance of a soft-sediment meiobenthic community by clam hand raking. Disturbance of a soft-sediment meiobenthic community by clam hand raking. The Italian Journal of Zoology, 71, 131–133. https://doi.org/10.1080/11250000409356563

    Article  Google Scholar 

  • Moens, T., Herman, P., Verbeeck, L., Steyaert, M., & Vincx, M. (2000). Predation rates and prey selectivity in two predacious estuarine nematode species. Marine Ecology Progress Series, 205, 185–193. https://doi.org/10.3354/MEPS205185

    Article  Google Scholar 

  • Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11(2), 328–336. https://doi.org/10.1016/J.ECOLIND.2010.05.011

    Article  Google Scholar 

  • Moreno, M., Vezzulli, L., Marin, V., Laconi, P., Albertelli, G., & Fabiano, M. (2008). The use of meiofauna diversity as an indicator of pollution in harbours. ICES Journal of Marine Science, 65(8), 1428–1435. https://doi.org/10.1093/ICESJMS/FSN116

    Article  CAS  Google Scholar 

  • Nair, N. M., & Ramachandran, K. K. (2002). Textural and trace elemental distribution in sediments of the Beypore estuary (SW coast of India) and adjoining innershelf. Indian Journal of Geo Marine Sciences 31(4) 295–304. http://nopr.niscair.res.in/handle/123456789/4353.

  • Nascimento, F. J. A., Näslund, J., & Elmgren, R. (2012). Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnology and Oceanography, 57(1), 338–346. https://doi.org/10.4319/LO.2012.57.1.0338

    Article  CAS  Google Scholar 

  • Näslund, J., Nascimento, F. J., & Gunnarsson, J. S. (2010). Meiofauna reduces bacterial mineralization of naphthalene in marine sediment. The ISME Journal 2010 4:11, 4(11), 1421–1430. https://doi.org/10.1038/ismej.2010.63

  • Patrício, J., Adão, H., Neto, J. M., Alves, A. S., Traunspurger, W., & Marques, J. C. (2012). Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecological Indicators, 14, 124–137. https://doi.org/10.1016/j.ecolind.2011.06.027

    Article  Google Scholar 

  • Platt, H. M., Warwick, R. M., & Furstenberg, J. P. (1985). Free-living marine nematodes. Part 1 British Enoplids. South African Journal of Zoology, 20(3), 177–177. https://doi.org/10.1080/02541858.1985.11447932

  • Ptatscheck, C., Brüchner-Hüttemann, H., Kreuzinger-Janik, B., Weber, S., & Traunspurger, W. (2020). Are meiofauna a standard meal for macroinvertebrates and juvenile fish? Hydrobiologia 2020 847:12, 847(12), 2755–2778. https://doi.org/10.1007/S10750-020-04189-Y

  • Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P., & Danovaro, R. (2014). Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8861–8866. https://doi.org/10.1073/PNAS.1405454111/-/DCSUPPLEMENTAL

    Article  CAS  Google Scholar 

  • Santhanam, H., & Amal Raj, S. (2019). Spatial and temporal analyses of salinity changes in Pulicat lagoon, a transitional ecosystem, during 1996–2015. Water Science, 33(1), 93–104. https://doi.org/10.1080/11104929.2019.1661944

    Article  Google Scholar 

  • Santhanam, H., & Natarajan, T. (2018). Short-term desalination of Pulicat lagoon (Southeast India) due to the 2015 extreme flood event: Insights from Land-Ocean Interactions in Coastal Zone (LOICZ) models. Ecological Processes, 7(1). https://doi.org/10.1186/s13717-018-0119-7

  • Santos, P. J. P., Castel, J., Souza-Santos, L. P., Santos, P. J. P., Castel, J., & Souza-Santos, L. P. (1996). Seasonal variability of meiofaunal abundance in the oligo-mesohaline area of the Gironde estuary. France. ECSS, 43(5), 549–563. https://doi.org/10.1006/ECSS.1996.0087

    Article  Google Scholar 

  • Schenk, J., Höss, S., Brinke, M., Kleinbölting, N., Brüchner-Hüttemann, H., & Traunspurger, W. (2020). Nematodes as bioindicators of polluted sediments using metabarcoding and microscopic taxonomy. Environment International, 143, 105922. https://doi.org/10.1016/J.ENVINT.2020.105922

    Article  CAS  Google Scholar 

  • Schmidt, C., & Martínez Arbizu, P. (2015). Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains. Deep-Sea Research Part II, Complete, 111, 60–75. https://doi.org/10.1016/J.DSR2.2014.08.019

    Article  CAS  Google Scholar 

  • Schückel, S., Sell, A. F., Kihara, T. C., Koeppen, A., Kröncke, I., & Reiss, H. (2013). Meiofauna as food source for small-sized demersal fish in the southern North Sea. Helgoland Marine Research, 67(2), 203–218. https://doi.org/10.1007/S10152-012-0316-1/FIGURES/3

    Article  Google Scholar 

  • Semprucci, F., Frontalini, F., Sbrocca, C., Châtelet, A. D., & E., Bout-Roumazeilles, V., Coccioni, R., & Balsamo, M. (2015). Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environmental Monitoring and Assessment, 5, 251. https://doi.org/10.1007/s10661-015-4493-7ï

    Article  Google Scholar 

  • Soetaert, K., Vincx, M., Wittoeck, J., & Tulkens, M. (1995). Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia, 311(1), 185–206. https://doi.org/10.1007/BF00008580

  • Sinh, V.N., Phuong K.T.N., Quang X.N .(2013). The distribution of meiofauna community related to salinity gradient in the Ham Luong estuary, Mekong river. Academia Journal of Biology 4, 35. https://doi.org/10.15625/0866-7160/v35n4.3.

  • Soltwedel, T. (2000). Metazoan meiobenthos along continental margins: A review. Progress in Oceanography, 46(1), 59–84. https://doi.org/10.1016/S0079-6611(00)00030-6

    Article  Google Scholar 

  • Steyaert, M., Vanaverbeke, J., Vanreusel, A., Barranguet, C., Lucas, C., & Vincx, M. (2003). The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine Coastal and Shelf Science, 58(2), 353–366. http://hdl.handle.net/1854/LU-209124.

  • Vijay, A., Munnooru, K., Reghu, G., Gera, A., Vinjamuri, R. R., & Ramanamurthy, M. V. (2021). Nutrient dynamics and budgeting in a semi-enclosed coastal hypersaline lagoon. Environmental Science and Pollution Research International. https://doi.org/10.1007/S11356-021-15334-Y

    Article  Google Scholar 

  • Walkley, A., Black, I. A., Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. SoilS, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Wang, X., Liu, X., & Xu, J. (2019). Distribution patterns of meiofauna assemblages and their relationship with environmental factors of deep sea adjacent to the Yap Trench, Western Pacific Ocean Frontiers in Marine Science, 6.https://doi.org/10.3389/fmars.2019.00735

  • Warwick, R., Dexter, D. M., & Kupermann, B. (2002a). Free living nematodes from the Salton Sea. Hydrobiologia 473/Dev. Hydrobiol., 161, 121–128.

    Article  Google Scholar 

  • Warwick, R. M., & Clarke, K. R. (1995). New biodiversity measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series, 129(1–3), 301–305. https://doi.org/10.3354/MEPS129301

    Article  Google Scholar 

  • Warwick, R. M., Dexter, D. M., & Kuperman, B. (2002b). Freeliving nematodes from the Salton Sea. Hydrobiologia, 473, 121–128. https://doi.org/10.1023/A:1016533801827

    Article  Google Scholar 

  • Zar, J. H. (2010). Biostatistical analysis - ERRATA. Prentice Hall New Jersey USA, 663. http://groups.csail.mit.edu/cis/crypto/classes/6.857/papers/chi_square_notes.pdf.

  • Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P. M., Fontaneto, D., Fontanier, C. (2015). Is the meiofauna a good indicator for climate change and anthropogenic impacts? Marine Biodiversity 2015 45:3, 45(3), 505–535. https://doi.org/10.1007/S12526-015-0359-Z.

Download references

Acknowledgements

The authors sincerely thank the Secretary, MoES for encouraging the study. The authors are thankful to the Ministry of Earth Sciences, Govt. of India for implementing the Ecosystem-based Services Programme at the National Centre for Coastal Research (NCCR), Chennai. We thankfully acknowledge all our colleagues at NCCR-MoES, India, for their support. This is NCCR Contribution No: NCCR/16/2019/MS376.

Author information

Authors and Affiliations

Authors

Contributions

Pandiya Rajan R S: Conceptualization, methodology, data curation, writing — original draft, visualization. Anitha G: Conceptualization, methodology, data curation, visualization, writing — review & editing, supervision. Ramu K: Conceptualization, methodology, data curation, visualization, writing — review & editing, supervision. Ranga Rao V: Conceptualization, methodology, data curation, visualization, writing — review & editing, supervision. Ramanamurthy MV: Conceptualization, methodology, data curation, visualization, writing — review & editing, supervision, funding acquisition.

Corresponding author

Correspondence to Pandiya rajan R S.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R S, P.r., Gera, A., K, R. et al. Influence of salinity on the meiofaunal distribution in a hypersaline lake along the southeast coast of India. Environ Monit Assess 194, 199 (2022). https://doi.org/10.1007/s10661-022-09829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09829-5

Keywords

Navigation