Skip to main content

Advertisement

Log in

Are the patterns of zooplankton community structure different between lakes and reservoirs? A local and regional assessment across tropical ecosystems

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Lakes and reservoirs present contrasting differences regarding origin, age and trophic state that may influence their biological communities. In the face of the inevitably rising number of reservoirs worldwide, our objective was to investigate the differences in zooplankton community structure and diversity patterns from 98 tropical shallow lakes and reservoirs (northeast Brazil). We tested the hypothesis that reservoirs have less diverse communities, which could be associated with ecosystem age or high productivity (a typical local pattern). The results show that most reservoirs are eutrophic ecosystems that hold distinct zooplankton communities in comparison with lakes. Despite their higher productivity, reservoirs played an essential role in subsidizing zooplankton diversity as they had higher gamma diversity because of the number of exclusive species, especially for the Rotifera group. The zooplankton density and biomass were also higher in the reservoirs, but this pattern was not associated with higher species dominance. Lakes also played a central role in zooplankton diversity, having a distinct species composition. Jointly, lakes and reservoirs help to maintain the zooplankton species pool at a regional level, suggesting the importance of complementarity in community composition between artificial and natural aquatic ecosystems on large-scale patterns of zooplankton biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht C, Wilke T (2008) Ancient Lake Ohrid: biodiversity and evolution. Hydrobiologia 615(1):103

    Article  Google Scholar 

  • Allen MR (2007) Measuring and modeling dispersal of adult zooplankton. Oecologia 153(1):135–143

    Article  PubMed  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46

    Google Scholar 

  • Araújo JAA (1982) Dams in the Northeast of Brazil, 2nd edn. DNOCS—Brazilian National Department of Droughts, Fortaleza

    Google Scholar 

  • Arthaud F, Vallod D, Robin J, Bornette G (2012) Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquat Sci 74(3):471–481

    Article  Google Scholar 

  • Barbosa JEL, Medeiros ESF, Brasil J, Cordeiro RS, Crispim MCB, Silva GHG (2012) Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnol Braz 24(1):103–118

    Article  Google Scholar 

  • Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87(12):2985–2991

    Article  PubMed  Google Scholar 

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6(8):783–796

    Article  Google Scholar 

  • Bottrell H, Duncan A, Gliwicz Z et al (1976) A review of some problems in zooplankton production studies. Nor J Zool 24(4):419–456

    Google Scholar 

  • Bouvy M, Pagano M, Troussellier M (2001) Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil). Aquat Microb Ecol 25(3):215–227

    Article  Google Scholar 

  • Bouvy M, Nascimento SM, Molica RJR, Ferreira A, Huszar V, Azevedo SMFO (2003) Limnological features in Tapacurá reservoir (northeast Brazil) during a severe drought. Hydrobiologia 493(1):115–130

    Article  CAS  Google Scholar 

  • Branstrator DK (2010) Origins of types of lake basins. In: Likens GE (ed) Lake ecosystem ecology: a global perspective. Academic Press, Oxford, pp 191–202

    Google Scholar 

  • Brown J, Stevens G, Kaufman D (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27(1):597–623

    Article  Google Scholar 

  • Canfield DE Jr, Watkins CE (1984) Relationships between zooplankton abundance and chlorophyll a concentrations in Florida lakes. J Freshw Ecol 2(4):335–344

    Article  CAS  Google Scholar 

  • Chase J, Leibold M (2002) Spatial scale dictates the productivity–biodiversity relationship. Nature 416(6879):427

    Article  CAS  Google Scholar 

  • Chellappa NT, Costa MAM (2003) Dominant and co-existing species of Cyanobacteria from a Eutrophicated reservoir of Rio Grande do Norte State, Brazil. Acta Oecol 24:S3–S10

    Article  Google Scholar 

  • Chellappa NT, Câmara FRA, Rocha O (2009) Phytoplankton community: indicator of water quality in the Armando Ribeiro Gonçalves reservoir and Pataxó channel, Rio Grande do Norte, Brazil. Braz J Biol 69(2):241–251

    Article  CAS  PubMed  Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Nichols SA (2016) Restoration and management of lakes and reservoirs, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Corgosinho PHC, Pinto-Coelho RM (2006) Zooplankton biomass, abundance and allometric patterns along an eutrophic gradient at Furnas Reservoir (Minas Gerais, Brazil). Acta Limnol Bras 182:213–224

    Google Scholar 

  • Costa IAS, Azevedo SMF, Senna PAC, Bernardo RR, Costa SM, Chellappa NT (2006) Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir. Braz J Biol 66(1B):211–219

    Article  CAS  PubMed  Google Scholar 

  • Crossetti LO, de Bicudo D, de Bicudo CEM, Bini LM (2008) Phytoplankton biodiversity changes in a shallow tropical reservoir during the hypertrophication process. Braz J Biol 68(4):1061–1067

    Article  CAS  PubMed  Google Scholar 

  • da Costa MRA, Attayde JL, Becker V (2016) Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778(1):75–89

    Article  CAS  Google Scholar 

  • De Araujo JC, Güntner A, Bronstert A (2006) Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrol Sci J 51(1):157–170

    Article  Google Scholar 

  • Diniz MTM, Pereira VHC (2015) Climatologia do estado do Rio Grande do Norte, Brasil: Sistemas atmosféricos atuantes e mapeamento de tipos de clima. Bol Goiano Geogr 35(3):488–506

    Google Scholar 

  • DNOCS (2015) Departamento Nacional de Obras Contra às Secas. História do DNOCS. http://www.dnocs.gov.br/. Accessed 1 Nov 2015

  • Dodson SI, Arnott SE, Cottingham KL (2000) The relationship in lake communities between primary productivity and species richness. Ecology 81(10):2662–2679

    Article  Google Scholar 

  • Dodson SI, Everhart WR, Jandl AK, Krauskopf SJ (2007) Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia 579(1):393–399

    Article  Google Scholar 

  • Doubek JP, Carey CC (2017) Catchment, morphometric, and water quality characteristics differ between reservoirs and naturally formed lakes on a latitudinal gradient in the conterminous United States. Inland Waters 7(2):171–180

    Article  CAS  Google Scholar 

  • Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29(1):9–24

    Google Scholar 

  • Elmoor-Loureiro L (1997) Manual de Identificação de Cladóceros Límnicos Do Brasil. Ed. Universitária, Distrito Federal

    Google Scholar 

  • Eskinazi-Sant’Anna EM, Menezes R, Costa IM, Araújo M, Panosso R, Attayde JL (2013) Zooplankton assemblages in eutrophic reservoirs of the Brazilian semi-arid. Braz J Biol 73(1):37–52

    Article  PubMed  Google Scholar 

  • ESRI (2011) Arc hydro tools - tutorial, version 2.0. http://downloads.esri.com/archydro/ArcHydro/Tutorial/Doc/Arc%20Hydro%20Tools%202.0%20-%20Tutorial.pdf. Visited on 1 Oct 2015

  • Esteves FA, Caliman A, Santangelo JM, Guariento RD, Farjalla VF, Bozelli RL (2008) Neotropical coastal lagoons: an appraisal of their biodiversity, functioning, threats and conservation management. Braz J Biol 68(4):967–981

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Cheng W, Zhang Y et al (2016) Changes in inland lakes on the Tibetan Plateau over the past 40 years. J Geogr Sci 26(4):415–438

    Article  Google Scholar 

  • Fernández-Rosado MJ, Lucena J (2001) Space-time heterogeneities of the zooplankton distribution in La Concepción reservoir (Istán, Málaga; Spain). Hydrobiologia 455(1–3):157–170

    Article  Google Scholar 

  • Figuerola J, Green A (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47(3):483–494

    Article  Google Scholar 

  • Finan TJ, Nelson DR (2001) Making rain, making roads, making do: public and private adaptations to drought in Ceará, Northeast Brazil. Clim Res 9(2):97–108

    Article  Google Scholar 

  • Ghidini AR, Serafim-Júnior M, Perbiche-Neves G, Brito L (2009) Distribution of planktonic cladocerans (Crustacea: Branchiopoda) of a shallow eutrophic reservoir (Paraná State, Brazil). Panam J Aquat Sci 4(3):294–305

    Google Scholar 

  • Gilbert JJ (1974) Dormancy in rotifers. Trans Am Microsc Soc 43(4):490–513

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391

    Article  Google Scholar 

  • Hall DJ, Cooper WE, Werner EE (1970) An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr 15(6):839–928

    Article  Google Scholar 

  • Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) (2000) ICES zooplankton methodology manual. Academic Press, London

    Google Scholar 

  • Havel JE, Lee CE, Vander Zanden MJ (2005) Do reservoirs facilitate invasions into landscapes? Bioscience 55(6):518–525

    Article  Google Scholar 

  • Havens KE, Beaver JR (2011) Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668(1):49–60

    Article  CAS  Google Scholar 

  • INMET (2015) Instituto Nacional de Meteorologia. Banco de Dados Meteorológicos para Ensino e Pesquisa. http://www.inmet.gov.br/portal/%0Aindex.php?r=bdmep/bdmep. Accessed 1 July 2015

  • Irz P, Odion M, Argillier C, Pont D (2006) Comparison between the fish communities of lakes, reservoirs and rivers: can natural systems help define the ecological potential of reservoirs? Aquat Sci 68(1):109–116

    Article  Google Scholar 

  • Jespersen A, Christoffersen K (1987) Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch für Hydrobiol 109:445–454

    CAS  Google Scholar 

  • Koste W (1978) Rotatoria. Die Rädertiere Mitteleuropas Ein Bestimmungswerk, Begründet von Max Voigt Überordnung Monogononta. (Gebrüder Borntraeger, ed.). Stuttgart

  • Kuczyńska-Kippen N (2005) On body size and habitat selection in rotifers in a macrophye-dominated lake Budzyńskie, Poland. Aquat Ecol. 239(4):447–454

    Google Scholar 

  • Lazzaro X, Bouvy M, Ribeiro-Filho RA et al (2003) Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshw Biol 48(4):649–668

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1):1–22

    Article  Google Scholar 

  • Lehner B, Liermann CR, Revenga C et al (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9(9):494–502

    Article  Google Scholar 

  • Leibold M (1999) Biodiversity and nutrient enrichment in pond plankton communities. Evol Ecol Res 1(1):73–95

    Google Scholar 

  • Maia-Barbosa PM, Peixoto RS, Guimarães S (2008) Zooplankton in littoral waters of a tropical lake: a revisited biodiversity. Braz J Biol 68:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Malveira VTC, de Araújo JC, Güntner A (2011) Hydrological impact of a high-density reservoir network in semiarid northeastern Brazil. J Hydrol Eng 17(1):109–117

    Article  Google Scholar 

  • Manatunge J, Nakayama M, Priyadarshana T (2008) Environmental and social impacts of reservoirs: issues and mitigation. Ocean Aquat Ecosyst 1:212–255

    Google Scholar 

  • Manly BFJ (2006) Randomization, bootstrap and monte carlo methods in biology. Champman and Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Masclaux H, Bourdier G, Jouve L, Duffaud E, Bec A (2014) Temporal changes in essential fatty acid availability in different food sources in the littoral macrophyte zone. Hydrobiologia 736(1):127–137

    Article  CAS  Google Scholar 

  • McKindsey CW, Bourget E (2001) Diversity of a northern rocky intertidal community: the influence of body size and succession. Ecology 82(12):3462–3478

    Article  Google Scholar 

  • Menezes RF, Attayde JL, Lacerot G, Kosten S, Souza LC, Costa LS, Van Nes EH, Jeppesen E (2012) Lower biodiversity of native fish but only marginally altered plankton biomass in tropical lakes hosting introduced piscivorous Cichla cf. ocellaris. Biol Invasions 14(7):1353–1363

    Article  Google Scholar 

  • Merrix-Jones FL, Thackeray SJ, Ormerod SJ (2013) A global analysis of zooplankton in natural and artificial fresh waters. J Limnol 72(1):12

    Article  Google Scholar 

  • Molle F (1991) Caractéristiques et potentialités des “açudes” du nordeste brésilien. Thesis, USTL Montpelier

  • Moss BR (2009) Ecology of Fresh waters: man and medium, past to future. Blackwell Science, Oxford

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nilsson C (2009) Reservoirs. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Academic Press, Oxford, pp 211–219

    Google Scholar 

  • Nogueira MG, Oliveira PCR, Britto YT (2008) Zooplankton assemblages (Copepoda and Cladocera) in a cascade of reservoirs of a large tropical river (SE Brazil). Limnetica 27(1):151–170

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P et al (2015) Vegan: community ecology package

  • Pagioro TA, Thomaz SM, Roberto MC (2005) Caracterização limnológica abiótica dos reservatórios. In: Rodrigues L, Thomaz SM, Agostinho AA, Gomes LC (eds) Biocenose de reservatórios: padrões espaciais e temporais. Rima, São Carlos, pp 17–38

    Google Scholar 

  • Paradis E (2012) Analysis of phylogenetics and evolution with R. Springer, New York

    Book  Google Scholar 

  • Parra G, Matias NG, Guerrero F, Boavida MJ (2009) Short term fluctuations of zooplankton abundance during autumn circulation in two reservoirs with contrasting trophic state. Limnetica 28:175–184

    Google Scholar 

  • Pauli HR (1989) A new method to estimate individual dry weights of rotifers. Hydrobiologia 186(1):355–361

    Article  Google Scholar 

  • Pekel J-F, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540(7633):418

    Article  CAS  Google Scholar 

  • Pianka E (1988) Evolutionary ecology, 4th edn. Harper & Rows, New York

    Google Scholar 

  • Pinto-Coelho R, Pinel-Alloul B, Méthot G, Havens KE (2005) Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Can J Fish Aquat Sci 62(2):348–361

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. http://www.r-project.org/. Accessed 1 Jul 2015

  • Rennie MD, Jackson LJ (2005) The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can J Fish Aquat Sci 69(2):2088–2099

    Article  Google Scholar 

  • Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446(1):1–11

    Article  Google Scholar 

  • Rosenberg DM, McCully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations: introduction. Bioscience 50(9):746–751

    Article  Google Scholar 

  • Sampaio EV, Rocha O, Matsumura-Tundisi T, Tundisi JG (2002) Composition and abundance of zooplankton in the limnetic zone of seven reservoirs of the Paranapanema River, Brazil. Braz J Biol 62(3):525–545

    Article  CAS  PubMed  Google Scholar 

  • Santos-Silva E (2000) Revisão das espécies do “complexo nordestinus”(Wright, 1935) de Notodiaptomus Kiefer, 1936 (Copepoda: Calanoida: Diaptomidae). Thesis, Universidade de São Paulo

  • Sendacz S, Caleffi S, Santos-Soares J (2006) Zooplankton biomass of reservoirs in different trophic conditions in the state of São Paulo, Brazil. Brazil J Biol 66(1B):337–350

    Article  CAS  Google Scholar 

  • Shurin JB (2000) Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81(11):3074–3086

    Article  Google Scholar 

  • Simões NR, Nunes AH, Dias JD, Lansac-Tôha FA, Velho LFM, Bonecker CC (2015) Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758(1):3–17

    Article  CAS  Google Scholar 

  • Soranno P, Carpenter S, He X (1993) Zooplankton biomass and body size. In: Carpenter S, Kitchell J (eds) The trophic cascade in lakes. Cambridge University Press, Cambridge, pp 116–152

    Chapter  Google Scholar 

  • Sousa W, Attayde JL, Rocha EDS, Eskinazi-Sant’Anna EM (2008) The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. J Plankton Res 30(6):699–708

    Article  Google Scholar 

  • SUDENE (2010) Superintendência do Desenvolvimento do Nordeste. MAPAS. http://www.sudene.gov.br/. Accessed 1 Oct 2011

  • Suthers IM, Rissik D (eds) (2009) Plankton: a guide to their ecology and monitoring for water quality. Csiro Publishing, Colinwood

    Google Scholar 

  • They NH, Amado AM, Cotner JB (2017) Redfield ratios in inland waters: higher biological control of C: N: P ratios in tropical semi-arid high water residence time lakes. Front Microbiol 8:1505

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw Biol 53(2):358–367

    Google Scholar 

  • Timms B (2009) Geomorphology of lake basins. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Academic Press, Oxford, pp 203–210

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6 part 2):2298–2314

    Article  CAS  Google Scholar 

  • Tundisi JG, Matsumura-Tundisi T (2003) Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. Aquat Biodivers 171:231–242

    Article  Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27(1):337–363

    Article  Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Wilkinson GM, Pace ML, Cole JJ (2013) Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochem Cycles 27(1):43–51

    Article  CAS  Google Scholar 

  • Wojciechowski J, Heino J, Bini LM, Padial AA (2017) Temporal variation in phytoplankton beta diversity patterns and metacommunity structures across subtropical reservoirs. Freshw Biol 62(4):751–766

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants provided by the Brazilian National Council for Scientific and Technological Development (CNPq—www.cnpq.br) through the Universal Grant (Process 477637/2011-6) to LSC. CRC is thankful to Coordination for the Improvement of Higher Education (CAPES—www.capes.gov.br) for the concession of a PhD scholarship. AC and AMA gratefully acknowledge continuous funding through Research Productivity Grants provided by CNPq (Processes 304621/2015-3 and 310033/2017-9). AMA is thankful for the support from the National Council for Scientific and Technological Development—CNPq through the Universal Grant (Proc. # 475537/2012-2). We are thankful to all staff members at the Limnology Laboratory at UFRN for helping us with fieldwork and laboratory analysis. We are also indebted to Gustavo Fonseca for reviewing an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Caliman.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10452_2019_9693_MOESM1_ESM.docx

Supplementary material includes two additional tables showing (i) data for landscape properties and land-use cover for the sampled lakes and reservoirs and (ii) the zooplankton species list, species mean abundance and the proportion of exclusive species from natural lakes and reservoirs. (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, C.R., Guariento, R.D., Ferreira, F.C. et al. Are the patterns of zooplankton community structure different between lakes and reservoirs? A local and regional assessment across tropical ecosystems. Aquat Ecol 53, 335–346 (2019). https://doi.org/10.1007/s10452-019-09693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09693-5

Keywords

Navigation