Skip to main content
Log in

Nano-Sulphonated Poly (glycidyl methacrylate)-Hexamethyl Pararosaniline chloride novel composite adsorbent development for treatment of dichromate and permanganate contaminated waste water

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The nano-Sulphonated Poly (glycidyl methacrylate)-Hexamethyl Pararosaniline Chloride (Crystal Violet; CV) composite (CV-SPGMA) has been developed as a novel adsorbent for treatment of Dichromate and Permanganate Contaminated Waste Water for the first time. The innovative adsorbent has been developed by adsorption of CV dye from wastewater using nano-Sulphonated Poly (glycidyl methacrylate) (SPGMA) particles. The study investigated the impact of various adsorption parameters. The CV content was observed to be linearly increased by variations in the concentration of CV up to 200 mg/L where maximum content obtained; 174.6 mg/g. The equilibrium almost reached after 90 min. An endothermic nature of the CV adsorption process has been noticed where 178 mg/g CV content obtained at 80 °C. The CV content decreased from 240 mg/g to 46 mg/g with the SPGMA adsorbent dose increment from 5 to 40 mg. The pH of adsorption exhibited the most pronounced impact, with the highest CV content achieved at a pH of 10.0 corresponding to 190.4 mg/g. The reusability of the produced CV-SPGMA adsorbent was examined for consecutive adsorption–desorption cycles, revealing a loss of just 13% in its initial adsorption efficiency after 10 cycles. In addition, the alterations in the chemical structure and morphology caused by the development of CV-SPGMA composite were observed through the utilization of characterization techniques including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX). Finally, the developed CV-SPGMA composite adsorbent, for the first time, tested for the removal of Cr (VI) and Mn (VII) metal ions from dichromate and permanganate contaminated waters under mild adsorption conditions where shows seven folds affinity towards removal of the Cr (VI), 84.6 mg/g, than Mn (VII), 11.66 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Noreen, S., Bhatti, H.N., Zuber, M., Zahid, M., Asgher, M.: Removal of actacid orange-RL dye using biocomposites: modeling studies. Pol. J. Environ. Stud. 26(5), 1–10 (2017)

    Article  Google Scholar 

  2. Bhatti, H.N., Safa, Y., Yakout, S.M., Shair, O.H., Iqbal, M., Nazir, A.: Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int. J. Biol. Macromol. 150(1), 861–870 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. Noreen, S., Bhatti, H.N., Iqbal, M., Hussain, F., Sarim, F.M.: Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol. 147(15), 439–452 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. Mahmoodi, N.M., Arami, M.: Numerical finite volume modeling of dye decolorization using immobilized Titania nanophotocatalysis. Chem. Eng. J. 146(2), 189–193 (2009)

    Article  CAS  Google Scholar 

  5. Ngo, A.C.R., Tischler, D.: Microbial degradation of azo dyes: approaches and prospects for a hazard-free conversion by microorganisms. Int. J. Environ. Res. Public Health 19, 4740 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pirkaramia, A., Olya, M.E., Limaee, N.Y.: Decolorization of azo dyes by photo electro adsorption process using polyaniline coated electrode. Prog. Org. Coat. 76, 682–688 (2013)

    Article  Google Scholar 

  7. Umar, K., Mfarrej, M.F.B., Rahman, Q.I., Zuhaib, M., Khan, A., Zia, Q., Banawas, S., Nadeem, H., Khan, M.F., Ahmad, F.: ZnO Nano-swirlings forAzo Dye AR183 photocatalytic degradation and antimycotic activity. Sci. Rep. 2, 14023 (2022)

    Article  Google Scholar 

  8. Maqbool, M., Bhatti, H.N., Sadaf, S., AL-Anazy, M.M., Iqbal, M.: Biocomposite of polyaniline and sodium alginate with Oscillatoria biomass: a potential adsorbent for the removal of basic blue 41. J. Mater. Res. Technol. 9(6), 14729–14741 (2020)

    Article  CAS  Google Scholar 

  9. Maqbool, M., Sadaf, S., Bhatti, H.N., Rehmat, S., Kausar, A., Alissa, S.A., Iqbal, M.: Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of Congo red dye: kinetics, thermodynamics and desorption studies. Surf. Interfaces 25, 101183 (2021)

    Article  CAS  Google Scholar 

  10. Foroutan, R., Mohammadi, R., MousaKhanloo, F., Sahebi, S., Ramavandi, B., Kumar, P.S., Vardhan, K.H.: Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv. Powder Technol. 31, 3993–4004 (2020)

    Article  CAS  Google Scholar 

  11. Bonyadi, Z., Kumar, P.S., Foroutan, R., Kafaei, R., Arfaeinia, H., Farjadfard, S., Ramavandi, B.: Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater. Korean J. Chem. Eng. 36, 1595–1603 (2019)

    Article  CAS  Google Scholar 

  12. Peighambardoust, S.J., A-Bavil, O., Foroutan, R., Arsalani, N.: Removal of malachite green using carboxymethyl cellulosegpolyacrylamide/montmorillonite nanocomposite hydroge. Int. J. Bio. Macromo. 159, 1122–1131 (2020)

    Article  CAS  Google Scholar 

  13. Esvandi, Z., Foroutan, R., Peighambardoust, S.J., Akbari, A., Ramavandi, B.: Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surf. Interfaces 21, 100754 (2020)

    Article  CAS  Google Scholar 

  14. Foroutan, R., Peighambardoust, S.J., Esvandi, Z., Khatooni, H., Ramavandi, B.: Evaluation of two cationic dyes removal from aqueous environments using CNT/MgO/CuFe2O4 magnetic composite powder: a comparative study. J. Environ. Chem. Eng. 9(2), 104752 (2021)

    Article  CAS  Google Scholar 

  15. Shah, V., Madamwar, D.: Community genomics: Isolation, characterization and expression of gene coding for azoreductase. Int. Biodeter. Biodegrad. 79(4), 1–8 (2013)

    Article  CAS  Google Scholar 

  16. Shertate, R.S., Thorat, P., Department of microbiology & Research center.: Biotransformation of textile dyes, a bioremedial aspect of marine environment. Am. J. Environ. Mental (2014)

  17. Balamurugan, B., Thirumarimurugan, M., Kannadasan, T.: Anaerobic degradation of textile dye bath effluent using Halomonas sp. Bioresour. (2011)

  18. Sharma, G., Kumar, A., Sharma, S., Al-Muhtaseb, A.H., Naushad, Mu., Ghfar, A.A., Ahamad, T., Stadler, F.J.: Fabrication and characterization of novel Fe0@Guar gumcrosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye. Sep. Purif. Technol. 211, 895–908 (2019)

    Article  CAS  Google Scholar 

  19. Sharma, G., Naushad, M., Pathania, D., Mittal, A., El-desoky, G.E.: Modification of Hibiscus cannabinus fiber by graft copolymerization: application for dye removal. Desalin. Water Treat. 54(11), 3114–3121 (2015)

    Article  CAS  Google Scholar 

  20. Sharma, G., Dionysiou, D.D., Sharma, S., Kumar, A., Al-Muhtaseb, A.H., Naushad, M., Stadler, F.J.: Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal. Today 335, 437–451 (2019)

    Article  CAS  Google Scholar 

  21. Sharma, G., Pathania, D., Naushad, M., Kothiyal, N.C.: Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem. Eng. J. 251, 413–421 (2014)

    Article  CAS  Google Scholar 

  22. Worch, E.: Adsorption technology in water treatment: fundamentals, processes, and modeling. De Gruyter, Berlin, Boston (2012). https://doi.org/10.1515/9783110240238

    Book  Google Scholar 

  23. Foroutan, R., Peighambardoust, S.J., Peighambardoust, S.H., Pateiro, M., Lorenzo, J.M.: Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: a kinetic equilibrium thermodynamic study. Molecules 26, 2241 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song, Y., Tan, J., Wang, G., Zhou, Li.: Superior amine-rich gel adsorbent from peach gum polysaccharide for highly efficient removal of anionic dyes. Carbohyd. Polym. 199, 178–185 (2018)

    Article  CAS  Google Scholar 

  25. Pandey, V., Singh, S.B., Gupta, M.K., Afroz, M., Agrahari, S., Singh, H., Tandon, P.K.: Removal of the cationic dyes with activated carbon obtained from low-cost ginger waste. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.12.056.

  26. Mladenovic, N., Makreski, P., Tarbuk, A., Grgic, K., Boev, B., Mirakovski, D., Toshikj, E., Dimova, V., Dimitrovski, D., Jordanov, I.: Improved dye removal ability of modified rice husk with effluent from alkaline scouring based on the circular economy concept. Processes 8, 653 (2020)

    Article  CAS  Google Scholar 

  27. El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Chegini, Z.G., Iqbal, M.: Organic Dyes Adsorption on the Almond Shell (Prunus dulcis) as Agricultural Solid Waste from Aqueous Solution in Single and Binary Mixture Systems. Biointerface Res. Appl. Chem. 12, 2022–2040 (2022)

    Google Scholar 

  28. Saini, B., Dey, A.: Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Mater. Today: Proc. 61, 342–350 (2022)

    CAS  Google Scholar 

  29. Li, S.: Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylase. Biores. Technol. 101, 2197–2202 (2010)

    Article  CAS  Google Scholar 

  30. Mohamed, R.R., Abu Elella, M.H., Sabaa, M.W., Saad, G.R.: Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution. Cellulose 25, 6513–6529 (2018)

    Article  CAS  Google Scholar 

  31. Jana, S., Ray, J., Mondal, B., Tripathy, T.: Efficient and selective removal of cationic organic dyes from their aqueous solutions by a nanocomposite hydrogel, katira gum-cl-poly(acrylic acid-co-N, N-dimethylacrylamide)@bentonite. Appl. Clay Sci. 173, 46–64 (2019)

    Article  CAS  Google Scholar 

  32. Abu Elella, M.H., Sabaa, M.W., AbdElHafeez, E., Mohamed, R.R.: Crystal violet dye removal using crosslinked grafted xanthan gum. Int. J. Biol. Macromol. 137, 1086–1101 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. Mohy Eldin, M.S., Gouda, M.H., Abu-Saied, M.A., El-Shazly, Y.M.S., Farag, H.A.: Development of grafted cotton fabrics ions exchanger for dye removal applications: methylene blue model. Desalin. Water Treat. 57, 22049–22060 (2016)

    Article  CAS  Google Scholar 

  34. MohyEldin, M.S., Elkady, M.F., Abdel Rahman, A.M., Soliman, E.A., Elzatahry, A.A., Youssef, M.E., Eweida, B.Y.: Preparation and characterization of imino diacetic acid functionalized alginate beads for removal of contaminates from waste water: I. methylene blue cationic dye model. Desalin. Water Treat. 40, 15–23 (2012)

    Article  Google Scholar 

  35. MohyEldin, M.S., Aly, K., Khan, Z.A., Meky, A.E., Saleh, T.S., Elbogamy, A.S.: Development of novel acid-base ions exchanger for basic dye removal: phosphoric acid doped pyrazole-g-polyglycidyl methacrylate. Desalin. Water Treat. 57, 24047–24055 (2016)

    Article  CAS  Google Scholar 

  36. Aksu, Z., In, Y.-S., Wong, N.F.Y., Tam: Algae for wastewater treatment. Springer-Verlag and Landes Bioscience, Germany, Biosorption of heavy metals by microalgae in batch and continuous systems pp. 37–53. (1998)

  37. Van Nguyen, P., Thi Hong Truong, H., Pham, T.A., Le Cong, T., Le, T., Thi Nguyen, K.C.: Removal of manganese and copper from aqueous solution by yeast Papiliotrema huenov. Mycobiology 49, 507–520 (2021)

    Article  Google Scholar 

  38. Ahmaruzzaman, Md.: Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Coll. Interf. Sci. 143, 48–67 (2008)

    Article  CAS  Google Scholar 

  39. Qian, Y., Gao, P., Xue, G., Liu, Z., Chen, J.: Oxidation of cefalexin by permanganate: reaction kinetics. Mech. Residual Antibacterial Act. Mol. 23, 2015 (2018)

    Google Scholar 

  40. Gupta, V., Kumari, S., Virvadiya, C.: Adsorption analysis of Mn(VII) from aqueous medium by activated orange peels powder. Int. Res. J. Pure Appl. Chem. 9, 1–8 (2015)

    Article  Google Scholar 

  41. Ezeugo, J., Anadebe, C.V.: Removal of potassium permanganate from aqueous solution by adsorption onto activated carbon prepared from animal bone and corn cob. Equatorial J. Eng. 14-21 (2018)

  42. Mahmoud, M.E., Yakout, A.A., Saad, S.R., Osman, M.M.: Removal of potassium permanganate from water by modified carbonaceous materials. Desalin. Water Treat. 57, 15559–15569 (2016)

    Article  CAS  Google Scholar 

  43. Virvadiya, C., Kumari, S., Choudhary, V., Gupta, V.: Combined bio- and chemosorption of Mn(VII) from aqueous solution by PROSOPIS CINERARIA leaf powder. Eur. Chem. Bull. 3, 315–318 (2014)

    CAS  Google Scholar 

  44. Chaudhary, M.: Use of millet husk as a biosorbent for the removal of chromium and manganese ions from the aqueous solutions. Int. J. Chem. Environ. Pharm. Res. 2, 30–33 (2011)

    CAS  Google Scholar 

  45. Wan Ngah, W.S., Hanafiah, M.A.K.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2007)

    Article  PubMed  Google Scholar 

  46. Waranusantigula, P., Pokethitiyook, P., Kruatrachue, M., Upatham, E.S.: Kinetics of cbasic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ. Pollut. 125, 385–392 (2003)

    Article  Google Scholar 

  47. Vo, A.T., Nguyen, V.P., Ouakouak, A., Nieva, A., Doma, B.T., Jr., Tran, H.N., Chao, H.-P.: Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: adsorption-coupled reduction mechanism. Water 11, 1164 (2019)

    Article  CAS  Google Scholar 

  48. Varga, M., Takács, M., Záray, G., Varga, I.: Comparative study of sorption kinetics and equilibrium of chromium (VI) on charcoals prepared from different low-cost materials. Microchem. J. 107, 25–30 (2013)

    Article  CAS  Google Scholar 

  49. Srinivasan, K.: Evaluation of rice husk carbon for the removal of trace inorganic form water. Thesis Submitted to I.I.T Madras (1986)

  50. Fawzy, M.A., Darwish, H., Alharthi, S., Zaban, M.I., Noureldeen, A., Hassan, S.H.A.: Process optimization and modeling of Cd2+ biosorption onto the free and immobilized Turbinaria ornata using Box-Behnken experimental design. Sci. Rep. 12, 3256 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malathi, S., Srinivasan, K., Gomathi, M.: Studies on the removal of Cr (VI) from aqueous solution by activated carbon developed from cottonseed activated withsulphuric acid. Int. J. Chem. Tech. Res. 8, 795–802 (2015)

    CAS  Google Scholar 

  52. Samani, M.R., Toghraie, D.: Removal of hexavalent chromium from water using polyaniline/ wood sawdust/ poly ethylene glycol composite: an experimental study. J. Environ. Health Sci. Eng. 17, 53–62 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jassal, P.S., Raut, V.P., Anand, N.: Removal of chromium (VI) ions from Aqueous solution onto Chitosan and cross-linked chitosan beads. Proc. Indian Natl. Sci. Acad. 76, 1-6 (2010)

  54. Marin, N.M.: Natural and synthetic polymers modified with acid blue 113 for removal of Cr3+, Zn2+ and Mn2+. Polymers 14, 2139 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El-Aassar, M.R., Tamer, T.M., El-Sayed, M.Y., Omer, A.M., Althobaiti, I.O., Youssef, M.E., Alolaimi, R.F., El Agammy, E.F., Alruwaili, M.S., Mohy-Eldin, M.S.: Development of azo dye immobilized poly (Glycidyl methacrylate-co-Methyl Methacrylate) polymers composites as novel adsorbents for water treatment applications: methylene blue-polymers composites. Polymers 14(21), 4672 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. El-Aassar, M.R., Tamer, T.M., El-Sayed, M.Y., Omer, A.M., Althobaiti, I.O., Youssef, M.E., Alolaimi, R.F., El Agammy, E.F., Alruwaili, M.S., Mohy-Eldin, M.S.: Development of azo dye immobilized sulfonated poly (Glycidyl methacrylate) polymers composites as novel adsorbents for water treatment applications: methylene blue adsorption isotherm, kinetic, thermodynamic, and simulations studies. Molecules 27(23), 8418 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mohy Eldin, M.S., Elkady, M.F., Abu-Saied, M.A., Abdel Rahman, A.M., Soliman, E.A., Elzatahry, A.A., Youssef, M.E.: Removal of cadmium ions from synthetic aqueous solutions using a novel nano-sulphonated poly glycidylmethacrylate cation exchanger: kinetic and equilibrium studies. J. App. Poly. Sci. 118, 3111–3122 (2010)

    Article  CAS  Google Scholar 

  58. Elkady, M.F., Abu-Saied, M.A., Abdel Rahman, A.M., Soliman, E.A., Elzatahry, A.A., Youssef, M.E., Mohy Eldin, M.S.: Novel nano-sulphonated polyglycidyl methacrylate cation exchanger for removal of heavy metals: optimization of the operational conditions. Desalination 279, 152–162 (2011)

    Article  CAS  Google Scholar 

  59. MohyEldin, M.S., Al-Bogami, A.S., Aly, K.M., Khan, Z.A., Mekky, A.E.M., Saleh, T.S., HakamyA, A.-W.: Removal of chromium (VI) metal ions using amberlite IRA-420 anions exchanger. Desalin. Water Treat. 60, 335–342 (2017)

    Article  Google Scholar 

  60. Mohy Eldin, M.S., Alamry, K.A., Al-Malki, M.A.: Kinetic and isothermal studies of manganese (VII) ions removal using amberlite IRA-420 anions exchanger. Desalin. Water Treat. 72, 30–40 (2017)

    Article  Google Scholar 

  61. Eren, Z., Acar, F.N.: Adsorption of reactive black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination 194, 1–10 (2006)

    Article  CAS  Google Scholar 

  62. Kannan, N., Sundaram, M.M.: Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study. Dyes Pigm. 51, 25–40 (2001)

    Article  CAS  Google Scholar 

  63. Bulut, Y., Aydin, A.: A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194, 259–267 (2006)

    Article  CAS  Google Scholar 

  64. Satapathy, M.K., Das, P.: Optimization of crystal violet dye removal using novel soil-silver nanocomposite as nanoadsorbent using response surface methodology. J. Environ. Chem. Eng. 2, 708–714 (2014)

    Article  CAS  Google Scholar 

  65. Ali, H., Muhammad, S.K.: Biosorption of crystal violet from water on leaf biomass of Calotropis procera. J. Environ. Sci. Technol. 1, 143–150 (2008)

    Article  CAS  Google Scholar 

  66. Kumari, J., Krishnamoorthy, H., Arumugam, P., Radhakrishnan, T.K., Vasudevan, S.D.: An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int. J. Biol. Macromol. 96, 324–333 (2017)

    Article  Google Scholar 

  67. Hamidzadeh, S., Torabbeigi, M., Shahtaheri, S.J.: Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J. Environ. Heal. Sci. Eng. 13, 8 (2015)

    Article  Google Scholar 

  68. Abdolahi, G., Dargahi, M., Ghasemzadeh, H.: Synthesis of starch-g-poly (acrylic acid)/ZnSe quantum dot nanocomposite hydrogel, for effective dye adsorption and photocatalytic degradation: thermodynamic and kinetic studies. Cellulose 27, 6467–6483 (2020)

    Article  CAS  Google Scholar 

  69. Zhou, Y., Zhang, M., Wang, X., Huang, Q., Min, Y., Ma, T., Niu, J.: Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind. Eng. Chem. Res. 53, 5498–5506 (2014)

    Article  CAS  Google Scholar 

  70. Qiao, H., Zhou, Y., Yu, F., Wang, E., Min, Y., Huang, Q., Pang, L., Ma, T.: Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141, 297–303 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Abu Elella, M.H., Sabaa, M.W., AbdElHafeez, E., Mohamed, R.R.: Crystal violet dye removal using crosslinked grafted xanthan gum. Int. J. Biol. Macromol. 137, 1086–1101 (2019)

    Article  CAS  PubMed  Google Scholar 

  72. Mohamed, R.R., Abu Elella, M.H., Sabaa, M.W., Saad, G.R.: Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution. Cellulose 25, 6513–6529 (2018)

    Article  CAS  Google Scholar 

  73. Bajpai, S., Jain, A.: Equilibrium and thermodynamic studies for adsorption of crystal violet onto spent tea leaves (STL). Water 4, 52–71 (2012)

    Google Scholar 

  74. Cheriaa, J., Khaireddine, M., Rouabhia, M., Bakhrouf, A.: Removal of triphenylmethane dyes by bacterial consortium. Sci. World J. 2012, 1–9 (2012)

    Article  Google Scholar 

Download references

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU), (grant number IMSIU-RP23098).

Author information

Authors and Affiliations

Authors

Contributions

T.T. performed the investigation and wrote the first draft, M. A. requested the fund and project management, A. O. performed the investigation and wrote the first draft, A. A. helped in project management, M.Y. applied the models for results and wrote the first draft, T.Y. applied the models for results and wrote the first draft, R.K. applied the models for results and wrote the first draft, M.S. tabulated the results and produced the figures, M. M. design and supervise the work, reviewed & edited the final version and submitted the manuscript.

Corresponding author

Correspondence to M. Mohy-Eldin.

Ethics declarations

Ethical approval

Not applicable. The research did not involve human participants or animals.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamer, T., Abou-Krisha, M., Omer, A. et al. Nano-Sulphonated Poly (glycidyl methacrylate)-Hexamethyl Pararosaniline chloride novel composite adsorbent development for treatment of dichromate and permanganate contaminated waste water. Adsorption (2024). https://doi.org/10.1007/s10450-024-00460-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00460-z

Keywords

Navigation