Skip to main content
Log in

The use of IAST for alcohol/water breakthrough separation simulations on all silica beta zeolite

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This paper investigates the use of the Ideal Adsorbed Solution Theory (IAST) for alcohol/water breakthrough separation simulations on an all-silica beta zeolite. Because of its very hydrophobic nature, this zeolite presents peculiar isotherms for water and the alcohols, 2-methylpropan-1-ol, and ethanol. Isotherm fitting was performed using the Dual Langmuir-Sips (DLS) model for 2-methylpropan-1-ol and ethanol, while the Brunauer–Emmett–Teller (BET) model was chosen for water. To overcome the issues for evaluating the BET spreading pressure integral during IAST calculations, its isotherm at high partial pressures was limited to a capacity where its pore volume equals the pore volume occupied by ethanol and 2-methylpropan-1-ol. A 1D, trace, isothermal, axially dispersed plug flow model was employed to simulate and predict breakthrough curves for binary and ternary mixtures containing 2-methylpropan-1-ol, ethanol, and water. The IAST breakthrough separation simulations were validated with experimental data where both the equilibrium and dynamic behavior match well. This study concludes that IAST can be applied to alcohol/water mixtures when it is combined with a uniform and almost defect-free all-silica adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and can be shared upon request to the corresponding author.

References

  1. Bai, P., Tsapatsis, M., Siepmann, J.I.: Multicomponent Adsorption of alcohols onto Silicalite-1 from aqueous solution: Isotherms, Structural Analysis, and Assessment of Ideal Adsorbed Solution Theory. Langmuir. 28, 15566–15576 (2012). https://doi.org/10.1021/la303247c

    Article  CAS  PubMed  Google Scholar 

  2. Burton, A.: Recent trends in the synthesis of high-silica zeolites. Catal. Reviews. 60, 132–175 (2018). https://doi.org/10.1080/01614940.2017.1389112

    Article  CAS  Google Scholar 

  3. Cessford, N.F., Seaton, N.A., Düren, T.: Evaluation of ideal adsorbed solution theory as a tool for the design of metal-organic framework materials. Ind. Eng. Chem. Res. 51, 4911–4921 (2012). https://doi.org/10.1021/ie202219w

    Article  CAS  Google Scholar 

  4. Claessens, B., Wittevrongel, G.R., Rey, F., et al.: Capturing renewable isobutanol from model vapor mixtures using an all-silica beta zeolite. Chem. Eng. J. 412, 128658 (2021). https://doi.org/10.1016/j.cej.2021.128658

    Article  CAS  Google Scholar 

  5. Cousin-Saint-Remi, J., Denayer, J.F.M.: Applying the wave theory to fixed-bed dynamics of Metal-Organic frameworks exhibiting stepped adsorption isotherms: Water/ethanol separation on ZIF-8. Chem. Eng. J. 324, 313–323 (2017). https://doi.org/10.1016/j.cej.2017.04.126

    Article  CAS  Google Scholar 

  6. Erickson, B., Nelson, Winters, P.: Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7, 176–185 (2012). https://doi.org/10.1002/biot.201100069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flanigen, E.M., Broach, R.W., Wilson, S.T.: Introduction. In: Zeolites in Industrial Separation and Catalysis, pp. 1–26. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010)

    Google Scholar 

  8. Fu, C., Li, Z., Jia, C., et al.: Recent advances on bio-based isobutanol separation. Energy Convers. Management: X. 10, 100059 (2021). https://doi.org/10.1016/j.ecmx.2020.100059

    Article  CAS  Google Scholar 

  9. Fuller, E.N., Ensley, K., Giddings, J.C.: Diffusion of halogenated hydrocarbons in Helium. The effect of structure on collision cross sections. J. Phys. Chem. 73, 3679–3685 (1969). https://doi.org/10.1021/j100845a020

    Article  CAS  Google Scholar 

  10. Furmaniak, S., Koter, S., Terzyk, A.P., et al.: New insights into the ideal adsorbed solution theory. Phys. Chem. Chem. Phys. 17, 7232–7247 (2015). https://doi.org/10.1039/c4cp05498a

    Article  CAS  PubMed  Google Scholar 

  11. Hull, A., Kronberg, B., Van Stam, J., et al.: Vapor-liquid equilibrium of binary mixtures. 1. Ethanol + 1-butanol, ethanol + octane, 1-butanol + octane. J. Chem. Eng. Data. 51, 1996–2001 (2006). https://doi.org/10.1021/je0600045

    Article  CAS  Google Scholar 

  12. Javeed, S., Qamar, S., Seidel-Morgenstern, A., Warnecke, G.: Efficient and accurate numerical simulation of nonlinear chromatographic processes. Comput. Chem. Eng. 35, 2294–2305 (2011). https://doi.org/10.1016/j.compchemeng.2010.10.002

    Article  CAS  Google Scholar 

  13. Koren, B.: Chap. 5: A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms. In: C.B. Vreugdenhil, B. Koren (eds) Numerical Methods for Advection-Diffusion Problems. Vieweg, pp 117–138 (1993)

  14. Krishna, R., van Baten, J.M.: How Reliable is the Ideal Adsorbed Solution Theory for the estimation of mixture separation selectivities in Microporous Crystalline adsorbents? ACS Omega. 6, 15499–15513 (2021). https://doi.org/10.1021/acsomega.1c02136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krishna, R., van Baten, J.M.: Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities. Langmuir. 26, 10854–10867 (2010). https://doi.org/10.1021/la100737c

    Article  CAS  PubMed  Google Scholar 

  16. Landa, H.O.R., Flockerzi, D., Seidel-Morgenstern, A.: A method for efficiently solving the IAST equations with an application to adsorber dynamics. AIChE J. 59, 1263–1277 (2013). https://doi.org/10.1002/aic.13894

    Article  CAS  Google Scholar 

  17. Laskar, I.I., Hashisho, Z.: Insights into modeling adsorption equilibria of single and multicomponent systems of organic and water vapors. Sep. Purif. Technol. 241, 116681 (2020). https://doi.org/10.1016/j.seppur.2020.116681

    Article  CAS  Google Scholar 

  18. Mangano, E., Friedrich, D., Brandani, S.: Robust algorithms for the solution of the ideal adsorbed solution theory equations. AIChE J. 61, 981–991 (2015). https://doi.org/10.1002/aic.14684

    Article  CAS  Google Scholar 

  19. Martin-Calvo, A., Van Der Perre, S., Claessens, B., et al.: Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8. Phys. Chem. Chem. Phys. 20, 9957–9964 (2018). https://doi.org/10.1039/c8cp01034j

    Article  CAS  PubMed  Google Scholar 

  20. Mathias, P.M., Kumar, R., Moyer, J.D., et al.: Correlation of Multicomponent Gas Adsorption by the Dual-Site Langmuir Model. Application to Nitrogen/Oxygen Adsorption on 5A-Zeolite. Ind. Eng. Chem. Res. 35, 2477–2483 (1996). https://doi.org/10.1021/ie950291y

    Article  CAS  Google Scholar 

  21. Moiseev, I.I.: Biotechnology is storming the heights of petrochemistry. Kinet. Catal. 57, 405–421 (2016). https://doi.org/10.1134/S0023158416040078

    Article  CAS  Google Scholar 

  22. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965). https://doi.org/10.1002/aic.690110125

    Article  CAS  Google Scholar 

  23. Olson, D.H., Haag, W.O., Borghard, W.S.: Use of water as a probe of zeolitic properties: Interaction of water with HZSM-5. Microporous Mesoporous Mater. 35–36, 435–446 (2000). https://doi.org/10.1016/S1387-1811(99)00240-1

    Article  Google Scholar 

  24. Özgür Yazaydin, A., Thompson, R.W.: Molecular simulation of water adsorption in silicalite: Effect of silanol groups and different cations. Microporous Mesoporous Mater. 123, 169–176 (2009). https://doi.org/10.1016/J.MICROMESO.2009.03.045

    Article  Google Scholar 

  25. Pérez-Botella, E., Valencia, S., Rey, F.: Zeolites in adsorption processes: State of the art and future prospects. Chem. Rev. 122, 17647–17695 (2022). https://doi.org/10.1021/acs.chemrev.2c00140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Poling, B.E., Prausnitz, J.M., O’connell, J.P.: The Properties of Gases and Liquids. Mcgraw-hill New York (2001)

  27. Richter, E., Wilfried, S., Myers, A.L.: Effect of adsorption equation on prediction of multicomponent adsorption equilibria by the ideal adsorbed solution theory. Chem. Eng. Sci. 44, 1609–1616 (1989). https://doi.org/10.1016/0009-2509(89)80003-X

    Article  CAS  Google Scholar 

  28. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley (1984)

  29. Santori, G., Luberti, M., Ahn, H.: Ideal adsorbed solution theory solved with direct search minimisation. Comput. Chem. Eng. 71, 235–240 (2014). https://doi.org/10.1016/j.compchemeng.2014.07.027

    Article  CAS  Google Scholar 

  30. Simon, C.M., Smit, B., Haranczyk, M.: pyIAST: Ideal adsorbed solution theory (IAST) Python package. Comput. Phys. Commun. 200, 364–380 (2016). https://doi.org/10.1016/j.cpc.2015.11.016

    Article  CAS  Google Scholar 

  31. Suzuki, M., Smith, J.M.: Axial dispersion in beds of small particles. Chem. Eng. J. 3, 256–264 (1972). https://doi.org/10.1016/0300-9467(72)85029-9

    Article  CAS  Google Scholar 

  32. Talu, O.: Needs, status, techniques and problems with binary gas adsorption experiments. Adv. Colloid Interface Sci. 76–77, 227–269 (1998). https://doi.org/10.1016/S0001-8686(98)00048-7

    Article  Google Scholar 

  33. Van Assche, T.R.C., Wittevrongel, G.R., Lozano Betancur, V., et al.: Graphical method to obtain multicomponent adsorption equilibria from intermediate breakthrough curve plateaus. Chem. Eng. Sci. 282, 119323 (2023). https://doi.org/10.1016/j.ces.2023.119323

    Article  CAS  Google Scholar 

  34. Van der Perre, S., Gelin, P., Claessens, B., et al.: Intensified Biobutanol Recovery by using zeolites with complementary selectivity. ChemSusChem. 10, 2968–2977 (2017). https://doi.org/10.1002/cssc.201700667

    Article  CAS  PubMed  Google Scholar 

  35. Walton, K.S., Sholl, D.S.: Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J. 61, 2757–2762 (2015). https://doi.org/10.1002/aic.14878

    Article  CAS  Google Scholar 

  36. Ward, A., Pini, R.: Integrated uncertainty quantification and sensitivity analysis of single-component dynamic column breakthrough experiments. Adsorption. 28, 161–183 (2022). https://doi.org/10.1007/s10450-022-00361-z

    Article  CAS  Google Scholar 

  37. Wilkins, N.S., Rajendran, A., Farooq, S.: Dynamic column breakthrough experiments for measurement of adsorption equilibrium and kinetics. Adsorption. 27, 397–422 (2021). https://doi.org/10.1007/s10450-020-00269-6

    Article  CAS  Google Scholar 

  38. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley (2003)

  39. Zhang, K., Lively, R.P., Noel, J.D., et al.: Adsorption of water and ethanol in MFI-Type zeolites. Langmuir. 28, 8664–8673 (2012). https://doi.org/10.1021/la301122h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Fernando Rey and Dr. Susana Valencia for providing a sample of all-Si beta zeolite.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by G.W. Numerical simulations were performed by G.W. The first draft of the manuscript was written by G.W. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Joeri F. M. Denayer.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittevrongel, G.R., Van Assche, T.R.C. & Denayer, J.F.M. The use of IAST for alcohol/water breakthrough separation simulations on all silica beta zeolite. Adsorption (2024). https://doi.org/10.1007/s10450-024-00457-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00457-8

Keywords

Navigation