Skip to main content
Log in

DFT calculations for adsorption of H2S and other natural gas compounds on M-BTC MOF clusters

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Desulfurization is a necessary process to reduce the corrosiveness of natural gas. In this regard, H2S adsorption on porous materials has gained attention in the development of new eco-friendly technologies. Although there are many experimental and theoretical studies about gas adsorption on MOFs, so far, there has been no theoretical work about desulfurization of natural gas or biogas through H2S adsorption on MOF BTC. Therefore, the objective of this study was to preselect by ab initio calculations which metal center M2+, such as Co2+, Ni2+, Cu2+, or Zn2+, has the highest potential for selective desulfurization of natural gas. DFT calculations were performed at B3LYP-D3/6-311++G(2d,p)+LanL2DZ level for H2O, H2S, COS, CO2, and CH4 adsorption on M-BTC MOF clusters in order to obtain adsorption complex equilibrium geometries, adsorption energies and thermodynamic properties. It was found that Zn-BTC MOF cluster has the highest potential for selective H2S removal from dry natural gas streams, since its adsorption energy is −79.4 kJ mol−1, which is 2.4 times higher than CH4. Furthermore, H2S adsorption on Zn-BTC MOF is an exothermic process and thermodynamically favorable. Through NBO and EDA analyses, it was found that d electrons transfer from adsorbate to metal center unoccupied orbitals contributes mainly to a possible H2S chemisorption on Zn-BTC and Co-BTC, while for CO2 and CH4 adsorption, non-bonded interactions predominate. Most of the gases coordinate to coordinatively unsaturated site of BTC MOF cluster at axial position, indicating a stronger interaction with metal center compared to linkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

\(\Delta E\) :

Adsorption energy

\(E\left(X\cdot MOF\right)\) :

Adsorption complex energy

\(E\left(X\right)\) :

Adsorbate molecule energy

\(E\left(MOF\right)\) :

MOF cluster energy

\(\Delta H\) :

Integral molar adsorption enthalpy

\(\Delta G\) :

Gibbs free energy of adsorption

\(\Delta S\) :

Adsorption entropy

B3LYP:

Becke-3 parameter-Lee–Yang–Parr functional

D3:

Grimme’s empirical dispersion correction

NBO:

Natural bond orbital

ALMO:

Absolutely localized molecular orbitals

EDA:

Energy decomposition analysis

Scf:

Self-consitent field

DFT:

Density functional theory

References

  1. BPstats: BP Statistical Review of World Energy. Bpstats (2022)

    Google Scholar 

  2. Santos, K.M.C., Menezes, T.R., Oliveira, M.R., Silva, T.S.L., Santos, K.S., Barros, V.A., Melo, D.C., Ramos, A.L., Santana, C.C., Franceschi, E., Dariva, C., Egues, S.M., Borges, G.R., De Conto, J.F.: Natural gas dehydration by adsorption using MOFs and silicas: a review. Sep. Purif. Technol. 276, 119409 (2021)

    Article  CAS  Google Scholar 

  3. Santos, M.G.R.S., Correia, L.M.S., de Medeiros, J.L., Araújo, Od.Q.F.: Natural gas dehydration by molecular sieve in offshore plants: impact of increasing carbon dioxide content. Energy Convers. Manag. 149, 760–773 (2017). https://doi.org/10.1016/j.enconman.2017.03.005

    Article  CAS  Google Scholar 

  4. Faramawy, S., Zaki, T., Sakr, A.A.E.: Natural gas origin, composition, and processing: a review. J. Nat. Gas Sci. Eng. 34, 34–54 (2016). https://doi.org/10.1016/j.jngse.2016.06.030

    Article  CAS  Google Scholar 

  5. Li, W., Zhou, Y., Xue, Y.: Corrosion behavior of 110S tube steel in environments of high H2S and CO2 Content. J. Iron. Steel Res. Int. 19, 59–65 (2012). https://doi.org/10.1016/S1006-706X(13)60033-3

    Article  Google Scholar 

  6. Farag, H.A.A., Ezzat, M.M., Amer, H., Nashed, A.W.: Natural gas dehydration by desiccant materials. Alexandria Eng. J. 50, 431–439 (2011). https://doi.org/10.1016/j.aej.2011.01.020

    Article  CAS  Google Scholar 

  7. Bartholomaeus, A.R., Haritos, V.S.: Review of the toxicology of carbonyl sulfide, a new grain fumigant. Food Chem. Toxicol. 43(12), 1687–1701 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Guo, H., Tang, L., Li, K., Ning, P., Sun, X., Liu, G., Bao, S., Zhu, T., Jin, X., Duan, Z., Li, Q.: The hydrolysis mechanism and kinetic analysis for COS hydrolysis: a DFT study. Russ. J. Phys. Chem. B (2016). https://doi.org/10.1134/S1990793116030209

    Article  Google Scholar 

  9. Li, W., Shudong, W., Quan, Y.: Removal of carbonyl sulfide at low temperature: experiment and modeling. Fuel Process. Technol. (2010). https://doi.org/10.1016/j.fuproc.2010.02.013

    Article  Google Scholar 

  10. Zhao, S., Yi, H., Tang, X., Jiang, S., Gao, F., Zhang, B., Zuo, Y., Wang, Z.: The hydrolysis of carbonyl sulfide at low temperature: a review. Sci World J 45, 739501 (2013)

    Google Scholar 

  11. National Agency of Petroleum Natural Gas and Biofuels: Resolução ANP No 16, de 17.6.2008, DOU 18.6.2008 (2008)

  12. Buonomenna, M.G.: Membrane separation of CO2 from natural gas. Recent Patents Mater. Sci. 10, 26–49 (2017). https://doi.org/10.2174/1874464810666170303111509

    Article  CAS  Google Scholar 

  13. Di Felice, R., Pagliai, P.: Prediction of the early breakthrough of a diluted H2S and dry gas mixture when treated by Sulfatreat commercial sorbent. Biomass Bioenerg. (2015). https://doi.org/10.1016/j.biombioe.2015.01.015

    Article  Google Scholar 

  14. Moioli, S., Pellegrini, L.A., Picutti, B., Vergani, P.: Improved rate-based modeling of H2S and CO2 removal by methyldiethanolamine scrubbing. Ind. Eng. Chem. Res. (2013). https://doi.org/10.1021/ie301967t

    Article  Google Scholar 

  15. Zahid, U., Sakheta, A., Lee, C.J.: Techno-economic analysis of acid gas removal from associated and non-associated sour gas using amine blend. Int. J. Greenh. Gas Control. 98, 103078 (2020). https://doi.org/10.1016/j.ijggc.2020.103078

    Article  CAS  Google Scholar 

  16. Tayar, S.P., Guerrero, Rd.B.S., Hidalgo, L.F., Bevilaqua, D.: Evaluation of biogas biodesulfurization using different packing materials. ChemEngineering 3, 27 (2019). https://doi.org/10.3390/chemengineering3010027

    Article  CAS  Google Scholar 

  17. Xu, G., Liang, F., Yang, Y., Hu, Y., Zhang, K., Liu, W.: An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies 7, 3484–3502 (2014). https://doi.org/10.3390/en7053484

    Article  CAS  Google Scholar 

  18. Rallapalli, P.B.S., Cho, K., Kim, S.H., Kim, J.N., Yoon, H.C.: Upgrading pipeline-quality natural gas to liquefied-quality via pressure swing adsorption using MIL-101(Cr) as adsorbent to remove CO2 and H2S from the gas. Fuel 281, 118985 (2020). https://doi.org/10.1016/j.fuel.2020.118985

    Article  CAS  Google Scholar 

  19. Zhang, H.P., Luo, X.G., Song, H.T., Lin, X.Y., Lu, X., Tang, Y.: DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene. Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2014.08.141

    Article  Google Scholar 

  20. de Oliveira, L.H., Meneguin, J.G., Pereira, M.V., da Silva, E.A., Grava, W.M., do Nascimento, J.F., Arroyo, P.A., de Oliveira, L.H., Meneguin, J.G., Pereira, M.V., da Silva, E.A., Grava, W.M., do Nascimento, J.F., Arroyo, P.A.: H2S adsorption on NaY zeolite. Microporous Mesoporous Mater. 284, 247–257 (2019). https://doi.org/10.1016/j.micromeso.2019.04.014

    Article  CAS  Google Scholar 

  21. Mulu, E., M’Arimi, M.M., Rose, R.C.: Purification and upgrade of biogas using biomass-derived adsorbents: review. In: Advances in Phytochemistry, Textile and Renewable Energy Research for Industrial Growth, pp. 286–295. CRC Press (2022)

    Chapter  Google Scholar 

  22. Zhang, H.Y., Zhang, Z.R., Yang, C., Ling, L.X., Wang, B.J., Fan, H.L.: A computational study of the adsorptive removal of H2S by MOF-199. J. Inorg. Organomet. Polym. Mater. 28, 694–701 (2018). https://doi.org/10.1007/s10904-017-0740-4

    Article  CAS  Google Scholar 

  23. Ketrat, S., Maihom, T., Wannakao, S., Probst, M., Nokbin, S., Limtrakul, J.: Coordinatively unsaturated metal-organic frameworks M3(btc)2 (M = Cr, Fe Co, Ni, Cu, and Zn) catalyzing the oxidation of CO by N2O: insight from DFT calculations. Inorg. Chem. 56, 14005–14012 (2017). https://doi.org/10.1021/ACS.INORGCHEM.7B02143/SUPPL_FILE/IC7B02143_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  24. Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., Fischer, R.A.: Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chem. Commun. 47, 8509–8511 (2011). https://doi.org/10.1039/c1cc11107h

    Article  CAS  Google Scholar 

  25. Hu, T.D., Jiang, Y., Ding, Y.H.: Computational screening of metal-substituted HKUST-1 catalysts for chemical fixation of carbon dioxide into epoxides. J. Mater. Chem. A. 7, 14825–14834 (2019). https://doi.org/10.1039/c9ta02455g

    Article  CAS  Google Scholar 

  26. Belmabkhout, Y., Bhatt, P.M., Adil, K., Pillai, R.S., Cadiau, A., Shkurenko, A., Maurin, G., Liu, G., Koros, W.J., Eddaoudi, M.: Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3, 1059–1066 (2018). https://doi.org/10.1038/s41560-018-0267-0

    Article  CAS  Google Scholar 

  27. Gupta, N.K., Bae, J., Kim, S., Kim, K.S.: Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: adsorption, regeneration, and mechanism. Chemosphere 274, 129789 (2021). https://doi.org/10.1016/j.chemosphere.2021.129789

    Article  CAS  PubMed  Google Scholar 

  28. Yakovenko, A.A., Reibenspies, J.H., Bhuvanesh, N., Zhou, H.C.: Generation and applications of structure envelopes for porous metal-organic frameworks. J. Appl. Crystallogr. 46, 346–353 (2013). https://doi.org/10.1107/S0021889812050935

    Article  CAS  Google Scholar 

  29. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  30. Fellah, M.F.: Adsorption of hydrogen sulfide as initial step of H2S removal: a DFT study on metal exchanged ZSM-12 clusters. Fuel Process. Technol. (2016). https://doi.org/10.1016/j.fuproc.2016.01.003

    Article  Google Scholar 

  31. Gomes, G.J., Dal Pozzo, D.M., Zalazar, M.F., Costa, M.B., Arroyo, P.A., Bittencourt, P.R.S.: Oleic acid esterification catalyzed by zeolite Y-model of the biomass conversion. Top. Catal. (2019). https://doi.org/10.1007/s11244-019-01172-3

    Article  Google Scholar 

  32. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeerschd, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Halgren, T.A.: Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996). https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c490::AID-JCC1%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  34. Baker, J., Muir, M., Andzelm, J., Scheiner, A.: Hybrid Hartree-Fock density-functional theory functionals: the adiabatic connection method. ACS Symp. Ser. (1996). https://doi.org/10.1021/bk-1996-0629.ch024

    Article  Google Scholar 

  35. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  36. Pnevskaya, A.Y., Bugaev, A.L.: Theoretical screening of M3(btc)2 metal–organic frameworks for ethylene and 1-methylcyclopropene storage. Results Chem. 5, 100831 (2023). https://doi.org/10.1016/j.rechem.2023.100831

    Article  CAS  Google Scholar 

  37. Supronowicz, B., Mavrandonakis, A., Heine, T.: Interaction of small gases with the unsaturated metal centers of the HKUST-1 metal organic framework. J. Phys. Chem. C 117, 14570–14578 (2013). https://doi.org/10.1021/jp4018037

    Article  CAS  Google Scholar 

  38. Braga, M.U.C., Perin, G.H., de Oliveira, L.H., Arroyo, P.A.: DFT calculations for adsorption of H2S and other natural gas compounds on (Fe Co, Ni, Cu and Zn)–Y zeolite clusters. Microporous Mesoporous Mater. 331, 111643 (2022). https://doi.org/10.1016/j.micromeso.2021.111643

    Article  CAS  Google Scholar 

  39. Dhumal, N.R., Singh, M.P., Anderson, J.A., Kiefer, J., Kim, H.J.: Molecular interactions of a Cu-based metal-organic framework with a confined imidazolium-based ionic liquid: a combined density functional theory and experimental vibrational spectroscopy study. J. Phys. Chem. C 120, 3295–3304 (2016). https://doi.org/10.1021/acs.jpcc.5b10123

    Article  CAS  Google Scholar 

  40. Grimme, S., Hansen, A., Brandenburg, J.G., Bannwarth, C.: Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016). https://doi.org/10.1021/acs.chemrev.5b00533

    Article  CAS  PubMed  Google Scholar 

  41. Sung, C.Y., Al Hashimi, S., McCormick, A., Cococcioni, M., Tsapatsis, M.: A DFT study on multivalent cation-exchanged y zeolites as potential selective adsorbent for H2S. Microporous Mesoporous Mater. (2013). https://doi.org/10.1016/j.micromeso.2012.12.006

    Article  Google Scholar 

  42. Sung, C.Y., Al Hashimi, S., McCormick, A., Tsapatsis, M., Cococcioni, M.: Density functional theory study on the adsorption of H2S and other claus process tail gas components on copper- and silver-exchanged Y zeolites. J. Phys. Chem. C (2012). https://doi.org/10.1021/jp2097313

    Article  Google Scholar 

  43. Barbosa, A.C.P., Esteves, P.M., Nascimento, M.A.C.: Paving the way for the molecular-level design of adsorbents for carbon capture: a quantum-chemical investigation of the adsorption of CO2 and N2 on pure-silica chabazite. J. Phys. Chem. C 121, 19314–19320 (2017). https://doi.org/10.1021/acs.jpcc.7b06611

    Article  CAS  Google Scholar 

  44. Wong, M.W.: Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. (1996). https://doi.org/10.1016/0009-2614(96)00483-6

    Article  Google Scholar 

  45. Rouquerol, F., Rouquerol, J., Sing, K.S.W.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic, San Diego (1999)

    Google Scholar 

  46. Mcquarrie, D.A., Simon, J.D.: Molecular thermodynamics. University Science Books, Sausalito (1999)

    Google Scholar 

  47. Ochterski, J.W.: Thermochemistry in Gaussian. Gaussian Inc, Pittsburgh (2000)

    Google Scholar 

  48. Galimberti, D.R., Sauer, J.: Chemically accurate vibrational free energies of adsorption from density functional theory molecular dynamics: alkanes in zeolites. J. Chem. Theory Comput. 17, 5849–5862 (2021). https://doi.org/10.1021/acs.jctc.1c00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics. Wiley, Hoboken, NJ (2006)

    Google Scholar 

  50. Pounds, A.J.: Valency and bonding: a natural bond orbital donor-acceptor perspective (Frank Weinhold and Clark Landis). J. Chem. Educ. 84, 43 (2007). https://doi.org/10.1021/ed084p43

    Article  CAS  Google Scholar 

  51. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988). https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  52. Khaliullin, R.Z., Bell, A.T., Head-Gordon, M.: Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals. J. Chem. Phys. 128, 184112 (2008). https://doi.org/10.1063/1.2912041

    Article  CAS  PubMed  Google Scholar 

  53. Khaliullin, R.Z., Cobar, E.A., Lochan, R.C., Bell, A.T., Head-Gordon, M.: Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J. Phys. Chem. A 111, 8753–8765 (2007). https://doi.org/10.1021/jp073685z

    Article  CAS  PubMed  Google Scholar 

  54. Shao, Y., Gan, Z., Epifanovsky, E., Gilbert, A.T.B., Wormit, M., Kussmann, J., Lange, A.W., Behn, A., Deng, J., Feng, X., Ghosh, D., Goldey, M., Horn, P.R., Jacobson, L.D., Kaliman, I., Khaliullin, R.Z., Kus̈, T., Landau, A., Liu, J., Proynov, E.I., Rhee, Y.M., Richard, R.M., Rohrdanz, M.A., Steele, R.P., Sundstrom, E.J., Woodcock, H.L., Zimmerman, P.M., Zuev, D., Albrecht, B., Alguire, E., Austin, B., Beran, G.J.O., Bernard, Y.A., Berquist, E., Brandhorst, K., Bravaya, K.B., Brown, S.T., Casanova, D., Chang, C.M., Chen, Y., Chien, S.H., Closser, K.D., Crittenden, D.L., Diedenhofen, M., Distasio, R.A., Do, H., Dutoi, A.D., Edgar, R.G., Fatehi, S., Fusti-Molnar, L., Ghysels, A., Golubeva-Zadorozhnaya, A., Gomes, J., Hanson-Heine, M.W.D., Harbach, P.H.P., Hauser, A.W., Hohenstein, E.G., Holden, Z.C., Jagau, T.C., Ji, H., Kaduk, B., Khistyaev, K., Kim, J., Kim, J., King, R.A., Klunzinger, P., Kosenkov, D., Kowalczyk, T., Krauter, C.M., Lao, K.U., Laurent, A.D., Lawler, K.V., Levchenko, S.V., Lin, C.Y., Liu, F., Livshits, E., Lochan, R.C., Luenser, A., Manohar, P., Manzer, S.F., Mao, S.P., Mardirossian, N., Marenich, A.V., Maurer, S.A., Mayhall, N.J., Neuscamman, E., Oana, C.M., Olivares-Amaya, R., Oneill, D.P., Parkhill, J.A., Perrine, T.M., Peverati, R., Prociuk, A., Rehn, D.R., Rosta, E., Russ, N.J., Sharada, S.M., Sharma, S., Small, D.W., Sodt, A., Stein, T., Stück, D., Su, Y.C., Thom, A.J.W., Tsuchimochi, T., Vanovschi, V., Vogt, L., Vydrov, O., Wang, T., Watson, M.A., Wenzel, J., White, A., Williams, C.F., Yang, J., Yeganeh, S., Yost, S.R., You, Z.Q., Zhang, I.Y., Zhang, X., Zhao, Y., Brooks, B.R., Chan, G.K.L., Chipman, D.M., Cramer, C.J., Goddard, W.A., Gordon, M.S., Hehre, W.J., Klamt, A., Schaefer, H.F., Schmidt, M.W., Sherrill, C.D., Truhlar, D.G., Warshel, A., Xu, X., Aspuru-Guzik, A., Baer, R., Bell, A.T., Besley, N.A., Da Chai, J., Dreuw, A., Dunietz, B.D., Furlani, T.R., Gwaltney, S.R., Hsu, C.P., Jung, Y., Kong, J., Lambrecht, D.S., Liang, W., Ochsenfeld, C., Rassolov, V.A., Slipchenko, L.V., Subotnik, J.E., Van Voorhis, T., Herbert, J.M., Krylov, A.I., Gill, P.M.W., Head-Gordon, M.: Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015). https://doi.org/10.1080/00268976.2014.952696

    Article  CAS  Google Scholar 

  55. Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian Inc., Wallingford (2016)

    Google Scholar 

  56. Williams, M.L.: CRC handbook of chemistry and physics, 76th edition. Occup. Environ. Med. (1996). https://doi.org/10.1136/oem.53.7.504

    Article  PubMed  PubMed Central  Google Scholar 

  57. Castellan, G.: Fundamentos de Físico-química. Livros Técnicos e Científicos, Rio de Janeiro (1986)

    Google Scholar 

  58. Buckingham, A.D., Disch, R.L.: The quadrupole moment of the carbon dioxide molecule. Proc. R Soc. Lond. A Math. Phys. Eng. Sci. 273, 275–289 (1963). https://doi.org/10.1098/rspa.1963.0088

    Article  CAS  Google Scholar 

  59. He, X., Kumakiri, I., Hillestad, M.: Conceptual process design and simulation of membrane systems for integrated natural gas dehydration and sweetening. Sep. Purif. Technol. 247, 116993 (2020). https://doi.org/10.1016/j.seppur.2020.116993

    Article  CAS  Google Scholar 

  60. Kinigoma, B.S., Ani, G.O.: Comparison of gas dehydration methods based on energy consumption. J. Appl. Sci. Environ. Manag. 20, 253–258 (2016). https://doi.org/10.4314/jasem.v20i2.4

    Article  CAS  Google Scholar 

  61. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Book  Google Scholar 

  62. Gutiérrez-Sevillano, J.J., Martín-Calvo, A., Dubbeldam, D., Calero, S., Hamad, S.: Adsorption of hydrogen sulphide on metal-organic frameworks. RSC Adv. 3, 14737–14749 (2013). https://doi.org/10.1039/c3ra41682h

    Article  CAS  Google Scholar 

  63. Ongari, D., Tiana, D., Stoneburner, S.J., Gagliardi, L., Smit, B.: Origin of the strong interaction between polar molecules and copper(II) paddle-wheels in metal organic frameworks. J. Phys. Chem. C 121, 15135–15144 (2017). https://doi.org/10.1021/acs.jpcc.7b02302

    Article  CAS  Google Scholar 

  64. Yang, Q., Xue, C., Zhong, C., Chen, J.F.: Molecular simulation of separation of CO2 from flue gases in Cu-BTC meta-organic framework. AIChE J. 53, 2832–2840 (2007). https://doi.org/10.1002/aic.11298

    Article  CAS  Google Scholar 

  65. Chowdhury, P., Mekala, S., Dreisbach, F., Gumma, S.: Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater. 152, 246–252 (2012). https://doi.org/10.1016/j.micromeso.2011.11.022

    Article  CAS  Google Scholar 

  66. Al-Janabi, N., Hill, P., Torrente-Murciano, L., Garforth, A., Gorgojo, P., Siperstein, F., Fan, X.: Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 281, 669–677 (2015). https://doi.org/10.1016/j.cej.2015.07.020

    Article  CAS  Google Scholar 

  67. Simmons, J.M., Wu, H., Zhou, W., Yildirim, T.: Carbon capture in metal-organic frameworks—a comparative study. Energy Environ. Sci. 4, 2177 (2011). https://doi.org/10.1039/c0ee00700e

    Article  CAS  Google Scholar 

  68. Hamon, L., Jolimaître, E., Pirngruber, G.D.: CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework. Ind. Eng. Chem. Res. 49, 7497–7503 (2010). https://doi.org/10.1021/ie902008g

    Article  CAS  Google Scholar 

  69. Liu, J., Wei, Y., Li, P., Zhao, Y., Zou, R.: Selective H2S/CO2 separation by metal-organic frameworks based on chemical-physical adsorption. J. Phys. Chem. C 121, 13249–13255 (2017). https://doi.org/10.1021/acs.jpcc.7b04465

    Article  CAS  Google Scholar 

  70. Salehi, S., Anbia, M.: High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199. Energy Fuels 31, 5376–5384 (2017). https://doi.org/10.1021/acs.energyfuels.6b03347

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Laboratory for Scientific Computing (LNCC), National Council for Scientific and Technological Development (CNPq) Grant ID: 141219/2021-1 and Coordination for the Improvement of Higher Education Personnel (CAPES) Grant ID: 88882.449152/2019-01.

Author information

Authors and Affiliations

Authors

Contributions

MUCB: All theoretical calculations, literature search, write the original paper and revise the manuscript. GHP: Theoretical calculations and help to write the manuscript. LHdO was the supervisor of this manuscript and helped to write and revise the manuscript, to discuss the results, to prepare the figures and tables and corrected English Grammar. PAA is the coordinator of this research, coordinator od Laboratory of Adosrption and Ion Exchange, and helped to revise the manuscript, to discuss the results, to prepare the figures and tables and revise the final version.

Corresponding author

Correspondence to Mateus U. C. Braga.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, M.U.C., Perin, G.H., de Oliveira, L.H. et al. DFT calculations for adsorption of H2S and other natural gas compounds on M-BTC MOF clusters. Adsorption (2024). https://doi.org/10.1007/s10450-024-00439-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00439-w

Keywords

Navigation