Skip to main content

Advertisement

Log in

Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption processes are expected to play an important role in carbon dioxide capture, utilization and storage (CCUS). In particular, blast furnace gas (BFG) from the steel industry is one of the major sources of CO2 emissions, and reducing emissions from this source is a major challenge. BFG can be treated as valuable hydrogen (H2) source through water gas shift reactions, which may allow synthesis of methane and methanol if the purification of these two gases is possible. This study proposes and designs a new Vacuum Pressure Swing Adsorption (VPSA) process that consists of two tandem adsorption columns for simultaneous separation of H2 and CO2 from BFG. A mathematical model is developed to predict the performance of the proposed process. The model is fitted to the experimental data using a VPSA pilot plant, which were demonstrated to predict flow rates within an error of 6%. Furthermore, the model was used to perform multi-objective optimization to analyze trade-offs among throughput, energy consumption, CO2 purity, and recovery. Finally, we analyzed the optimal design and operating conditions such as pressure and column height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ad ratio :

Ratio of adsorption time to desorption time [–]

C :

Total concentration [mol/m3]

C i :

Concentration of component i [mol/m3]

Cp g :

Heat capacity of gas [J/kg/K]

Cp s :

Heat capacity of solid [J/kg/K]

Cp w :

Wall heat capacity [J/kg/K]

De :

Effective diffusivity [m2/s]

D i,j :

Gas diffusivity [m2/s]

D p :

Adsorbent diameter [m]

D X :

Axial dispersion coefficient [m2/s]

D z :

Dispersion coefficient [m2/s]

E :

Energy consumption for a unit mole of recovered gas [kJ/mol]

E max :

Upper bound of energy consumption [kJ/mol]

Feed :

Total molar volume of gas that enters the VPSA [mol/m2]

F :

Feed inflow rate [NL/min]

F in :

Feed gas flow rate [NL/min]

Flow :

Flow rate from the column [NL/min]

h air :

Heat transfer coefficient of air [J/m2/s/K]

h i :

Heat transfer coefficient [J/m2/s/K]

K i :

Affinity constant of component i [bar1]

K L :

Effective axial thermal coefficient [J/m/s/K]

L 1, L 2 :

Height of column 1 and 2 [m]

M :

Penalty constant

Mw i :

Molecular weight of component i [g/mol]

N Comp :

Number of components

P :

Total pressure [Pa]

P 1, P 2 :

Pressure of column 1 and column 2 [kPa]

P atm :

Atmospheric pressure [kPa]

P i :

Partial pressure of component i [bar]

P in :

Pressure of column inlet [Pa]

P ur min :

Lower bound of purity [%]

q 0i :

Saturation capacity [mol/kg]

q i :

Adsorption amount of component i [mol/kg]

q i*:

Adsorption amount of component i in the equilibrium state [mol/kg]

R :

Gas constant [J/k/mol]

R b :

Radius of the column [m]

R ec min :

Lower bound of recovery [%]

Re p :

Particle Reynolds number [−]

R p :

Adsorbent radius [m]

Si :

Set for step index [−]

t :

Time [s]

T air :

Air temperature [K]

t cy :

Cycle time [t]

T in :

Temperature of column inlet [K]

T wall :

Wall temperature [K]

u :

Superficial velocity [m/s]

U :

Overall heat transfer coefficient [J/m/s/K]

work ad :

Work of adsorption [kJ]

work de :

Work of desorption [kJ]

y i :

Mole fraction of component i [−]

z :

Coordinate in the axial direction [m]

α, β :

Parameters for approximation of pressure

γ :

Heat capacity ratio [−]

γ i, δ i :

Parameters used in the boundary conditions

ΔH i :

Adsorption enthalpy [J/mol]

ε 1, ε 2 :

Tolerance variables to enforce a cyclic steady state for column 1 and 2 [−]

ε b :

Bed void [−]

ε t :

Total void fraction [−]

η blower :

Efficiency of blower [−]

η pump :

Efficiency of pump [−]

θ :

Vector of parameters to be estimated

\({\theta }_{lit}\) :

Initial parameter value

λ ads :

Thermal conductivity of solid [J/m/s/K]

λ g :

Estimated thermal conductivity of gas [J/m/s/K]

λ wall :

Thermal conductivity of wall [J/m/s/K]

μ :

Viscosity [Pa s]

ρ :

Regularization coefficient [−]

ρ b :

Density of bed [kg/m3]

ρ g :

Density of gas [kg/m3]

ρ p :

Adsorbent density [kg/m3]

ρ w :

Wall density [kg/m3]

φ :

Vector of state variables

a d :

Adsorption

b l :

Blowdown

d e :

Desorption

exp :

Experimental value

l it :

Literature value

M odel :

Modeled value

p r :

Pressurization

References

  1. Houghton, J.: Global warming. Rep. Prog. Phys. 68(6), 1343–1403 (2005). https://doi.org/10.1088/0034-4885/68/6/R02

    Article  Google Scholar 

  2. Smit, B., Reimer, J., Oldenburg, C., Bourg, I.: Introduction to Carbon Capture and Sequestration. Imperial College Press, London (2014)

    Book  Google Scholar 

  3. Tapia, J.F.D., Lee, J.-Y., Ooi, R.E.H., Foo, D.C.Y., Tan, R.R.: A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustain. Prod. Consump. 13, 1–15 (2018). https://doi.org/10.1016/j.spc.2017.10.001

    Article  Google Scholar 

  4. International Energy Agency. Energy technology perspectives. In: Strategies (Issue June), Paris (2008)

    Google Scholar 

  5. Haraoka, T., Mogi, Y., Saima, H.: PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the infuence of operation conditions on Co2 separation. Kagaku Kogaku Ronbunshu 39(5), 439–444 (2013). https://doi.org/10.1252/kakoronbunshu.39.439

    Article  CAS  Google Scholar 

  6. National Institute for Environmental Studies. National Greenhouse Gas Inventory Report of JAPAN 2020 (2020)

  7. Shigaki, N., Mogi, Y., Haraoka, T., Sumi, I.: Reduction of electric power consumption in CO2-PSA with zeolite 13X adsorbent. Energies 11(4), 900 (2018). https://doi.org/10.3390/en11040900

    Article  CAS  Google Scholar 

  8. Chen, W.H., Chen, C.Y.: Water gas shift reaction for hydrogen production and carbon dioxide capture: a review. Appl. Energy 258(2019), 114078 (2020). https://doi.org/10.1016/j.apenergy.2019.114078

  9. Rhodes, C., Hutchings, G.J., Ward, A.M.: Water-gas shift reaction: finding the mechanistic boundary. Catal. Today 23(1), 43–58 (1995). https://doi.org/10.1016/0920-5861(94)00135-O

    Article  CAS  Google Scholar 

  10. Wang, W., Gong, J.: Methanation of carbon dioxide: an overview. Front. Chem. Eng. China 5(1), 2–10 (2011). https://doi.org/10.1007/s11705-010-0528-3

    Article  CAS  Google Scholar 

  11. Wang, W.H., Himeda, Y., Muckerman, J.T., Manbeck, G.F., Fujita, E.: CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115(23), 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197

    Article  CAS  PubMed  Google Scholar 

  12. Streb, A., Mazzotti, M.: Novel adsorption process for co-production of hydrogen and CO2 from a multicomponent stream-part 2: application to steam methane reforming and autothermal reforming gases. Ind. Eng. Chem. Res. 59(21), 10093–10109 (2020). https://doi.org/10.1021/acs.iecr.9b06953

    Article  CAS  Google Scholar 

  13. Haghpanah, R., Majumder, A., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A., Amanullah, M.: Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation. Ind. Eng. Chem. Res. 52(11), 4249–4265 (2013). https://doi.org/10.1021/ie302658y

    Article  CAS  Google Scholar 

  14. Haghpanah, R., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A.: Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 59(12), 4735–4748 (2013). https://doi.org/10.1002/aic.14192

    Article  CAS  Google Scholar 

  15. Farooq, S., Ruthven, D.M.: Numerical simulation of a kinetically controlled pressure swing adsorption bulk separation process based on a diffusion model. Chem. Eng. Sci. 46(9), 2213–2224 (1991). https://doi.org/10.1016/0009-2509(91)85121-D

    Article  CAS  Google Scholar 

  16. Malek, A., Farooq, S.: Hydrogen purification from refinery fuel gas by pressure swing adsorption. AIChE J. 44(9), 1985–1992 (1998). https://doi.org/10.1002/aic.690440906

    Article  CAS  Google Scholar 

  17. Saima, H., Mogi, Y., Haraoka, T.: Development of PSA system for the recovery of carbon dioxide and carbon monoxide from blast furnace gas in steel works. Energy Procedia 37(19), 7152–7159 (2013). https://doi.org/10.1016/j.egypro.2013.06.652

    Article  CAS  Google Scholar 

  18. Susarla, N., Haghpanah, R., Karimi, I.A., Farooq, S., Rajendran, A., Tan, L.S.C., Lim, J.S.T.: Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption. Chem. Eng. Res. Des. 102, 354–367 (2015). https://doi.org/10.1016/j.cherd.2015.06.033

    Article  CAS  Google Scholar 

  19. Hasan, M.M.F., First, E.L., Boukouvala, F., Floudas, C.A.: A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput. Chem. Eng. 81, 2–21 (2015). https://doi.org/10.1016/j.compchemeng.2015.04.034

    Article  CAS  Google Scholar 

  20. Agarwal, A., Biegler, L.T., Zitney, S.E.: A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture. AIChE J. 56(7), 1813–1828 (2010). https://doi.org/10.1002/aic.12107

    Article  CAS  Google Scholar 

  21. Casas, N., Schell, J., Joss, L., Mazzotti, M.: A parametric study of a PSA process for pre-combustion CO2 capture. Sep. Purif. Technol. 104, 183–192 (2013). https://doi.org/10.1016/j.seppur.2012.11.018

    Article  CAS  Google Scholar 

  22. Leperi, K.T., Yancy-Caballero, D., Snurr, R.Q., You, F.: 110th anniversary: surrogate models based on artificial neural networks to simulate and optimize pressure swing adsorption cycles for CO2 capture. Ind. Eng. Chem. Res. 58(39), 18241–18252 (2019). https://doi.org/10.1021/acs.iecr.9b02383

    Article  CAS  Google Scholar 

  23. Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. Wiley, New York (1994)

    Google Scholar 

  24. Ko, D., Siriwardane, R., Biegler, L.T.: Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Ind. Eng. Chem. Res. 44(21), 8084–8094 (2005). https://doi.org/10.1021/ie050012z

    Article  CAS  Google Scholar 

  25. Ho, M.T., Allinson, G.W., Wiley, D.E.: Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind. Eng. Chem. Res. 47(14), 4883–4890 (2008). https://doi.org/10.1021/ie070831e

    Article  CAS  Google Scholar 

  26. Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., Todd, R.: Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14(4–5), 575–582 (2008). https://doi.org/10.1007/s10450-008-9128-7

    Article  CAS  Google Scholar 

  27. Grande, C.A.: Advances in pressure swing adsorption for gas separation. ISRN Chem Eng 2012, 1–13 (2012). https://doi.org/10.5402/2012/982934

    Article  CAS  Google Scholar 

  28. Choi, W.K., Kwon, T.I., Yeo, Y.K., Lee, H., Song, H.K., Na, B.K.: Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery. Korean J. Chem. Eng. 20(4), 617–623 (2003). https://doi.org/10.1007/BF02706897

    Article  CAS  Google Scholar 

  29. Na, B.K., Lee, H., Koo, K.K., Song, H.K.: Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon. Ind. Eng. Chem. Res. 41(22), 5498–5503 (2002). https://doi.org/10.1021/ie0109509

    Article  CAS  Google Scholar 

  30. Kim, Y.J., Nam, Y.S., Kang, Y.T.: Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas. Energy 91, 732–741 (2015). https://doi.org/10.1016/j.energy.2015.08.086

    Article  CAS  Google Scholar 

  31. Wang, L., Liu, Z., Li, P., Yu, J., Rodrigues, A.E.: Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem. Eng. J. 197, 151–161 (2012). https://doi.org/10.1016/j.cej.2012.05.017

    Article  CAS  Google Scholar 

  32. Abdeljaoued, A., Relvas, F., Mendes, A., Chahbani, M.H.: Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells. J. Environ. Chem. Eng. 6(1), 338–355 (2018). https://doi.org/10.1016/j.jece.2017.12.010

    Article  CAS  Google Scholar 

  33. Hasan, M.M.F., Baliban, R.C., Elia, J.A., Floudas, C.A.: Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Ind. Eng. Chem. Res. 51(48), 15642–15664 (2012). https://doi.org/10.1021/ie301571d

  34. Reynolds, S.P., Ebner, A.D., Ritter, J.A.: New pressure swing adsorption cycles for carbon dioxide sequestration. Adsorption 11(S1), 531–536 (2005). https://doi.org/10.1007/s10450-005-5980-x

    Article  Google Scholar 

  35. Sircar, S.: Recent trends in pressure swing adsorption: production of multiple products from a multicomponent feed gas. Gas Sep. Purif. 7(2), 69–73 (1993). https://doi.org/10.1016/0950-4214(93)85003-E

    Article  CAS  Google Scholar 

  36. Dong, F., Lou, H., Kodama, A., Goto, M., Hirose, T.: A new concept in the design of pressure-swing adsorption processes for multicomponent gas mixtures. Ind. Eng. Chem. Res. 38(1), 233–239 (1999). https://doi.org/10.1021/ie980323s

    Article  CAS  Google Scholar 

  37. Kumar, R.: Adsorption process for recovering two high purity gas products from multicomponent gas mixtures. Patent No. US-4913709-A (1990).

  38. Sircar, S., Kratz, W.C.: Simultaneous production of hydrogen and carbon dioxide from steam reformer off-gas by pressure swing adsorption. Sep. Sci. Technol. 23(14–15), 2397–2415 (1988). https://doi.org/10.1080/01496398808058461

    Article  Google Scholar 

  39. Streb, A., Hefti, M., Gazzani, M., Mazzotti, M.: Novel adsorption process for Co-production of hydrogen and CO2 from a multicomponent stream. Ind. Eng. Chem. Res. 58(37), 17489–17506 (2019). https://doi.org/10.1021/acs.iecr.9b02817

    Article  CAS  Google Scholar 

  40. Park, Y., Kang, J.-H., Moon, D.-K., Jo, Y.S., Lee, C.-H.: Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture. Chem. Eng. J. 408, 127299 (2021). https://doi.org/10.1016/j.cej.2020.127299

    Article  CAS  Google Scholar 

  41. Shigaki, N., Mogi, Y., Kijima, H., Kakiuchi, T., Yajima, T., Kawajiri, Y.: Performance evaluation of gas fraction PSA for CCU process. Int. J. Greenh. Gas Control 120, 103763 (2022)

    Article  CAS  Google Scholar 

  42. Ko, D., Siriwardane, R., Biegler, L.T.: Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Ind. Eng. Chem. Res. 42(2), 339–348 (2003). https://doi.org/10.1021/ie0204540

    Article  CAS  Google Scholar 

  43. Ko, D., Siriwardane, R., Biegler, L.T.: Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 sequestration. In: AIChE Annual Meeting, Conference Proceedings, November (2004).

  44. Ribeiro, A.M., Grande, C.A., Lopes, F.V., Loureiro, J.M., Rodrigues, A.E.: A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 63(21), 5258–5273 (2008). https://doi.org/10.1016/j.ces.2008.07.017

    Article  CAS  Google Scholar 

  45. Luberti, M., Kim, Y.H., Lee, C.H., Ferrari, M.C., Ahn, H.: New momentum and energy balance equations considering kinetic energy effect for mathematical modelling of a fixed bed adsorption column. Adsorption 21(5), 353–363 (2015). https://doi.org/10.1007/s10450-015-9675-7

    Article  CAS  Google Scholar 

  46. Japan Stainless Steel Association. Physical properties of stainless steel such as electrical conductivity, magnetic permeability, and thermal expansion (2011). https://www.jssa.gr.jp/contents/faq-article/q6/. Accessed 18 June, 2021

  47. Kogakukai, K. (ed.).: Kagaku Kogaku Binran. Maruzen (2011)

  48. Wen, D., Ding, Y.: Heat transfer of gas flow through a packed bed. Chem. Eng. Sci. 61(11), 3532–3542 (2006). https://doi.org/10.1016/j.ces.2005.12.027

    Article  CAS  Google Scholar 

  49. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  50. Suzuki, K., Harada, H., Sato, K., Okada, K., Tsuruta, M., Yajima, T., Kawajiri, Y.: Utilization of operation data for parameter estimation of simulated moving bed chromatography. J. Adv. Manuf. Process. 4(1), 1–18 (2022). https://doi.org/10.1002/amp2.10103

    Article  CAS  Google Scholar 

  51. Tie, S., Sreedhar, B., Agrawal, G., Oh, J., Donaldson, M., Frank, T., Schultz, A., Bommarius, A., Kawajiri, Y.: Model-based design and experimental validation of simulated moving bed reactor for production of glycol ether ester. Chem. Eng. J. 301, 188–199 (2016). https://doi.org/10.1016/j.cej.2016.04.062

    Article  CAS  Google Scholar 

  52. Tie, S., Sreedhar, B., Donaldson, M., Frank, T., Schultz, A.K., Bommarius, A.S., Kawajiri, Y.: Experimental evaluation of simulated moving bed reactor for transesterification reaction synthesis of glycol ether ester. Adsorption 25(4), 795–807 (2019). https://doi.org/10.1007/s10450-019-00048-y

    Article  CAS  Google Scholar 

  53. Ahn, H., Hong, S.H., Zhang, Y., Lee, C.H.: Experimental and simulation study on CO2 adsorption dynamics of a zeolite 13X column during blowdown and pressurization: implications of scaleup on CO2 capture vacuum swing adsorption cycle. Ind. Eng. Chem. Res. 59(13), 6053–6064 (2020)

    Article  CAS  Google Scholar 

  54. Shigaki, N., Mogi, Y., Haraoka, T., Furuya, E.: Measurements and calculations of the equilibrium adsorption amounts of CO2–N2, CO–N2, and CO2–CO mixed gases on 13X zeolite. SN Appl. Sci. 2(3), 1–17 (2020). https://doi.org/10.1007/s42452-020-2298-y

    Article  CAS  Google Scholar 

  55. Streb, A., Mazzotti, M.: Adsorption in the context of clean hydrogen production: process intensification by integrating H2 purification and CO2 capture—a modeling and experimental study of multi-component adsorption. SSRN Electron. J. (2021). https://doi.org/10.2139/ssrn.3811394

    Article  Google Scholar 

  56. Suzuki, T., Sakoda, A., & Suzuki, M.: The current status and related issues of studies on rapid pressure swing adsorption. Seisan Kenkyu 50(6), 213–220 (1998). https://doi.org/10.11188/seisankenkyu.50.213

  57. Khajuria, H., Pistikopoulos, E.N.: Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems. J. Process Control 21(1), 151–163 (2011). https://doi.org/10.1016/j.jprocont.2010.10.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based on results obtained from a project, JPNP16002, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Funding

Funding was provided by New Energy and Industrial Technology Development Organization (Grant Number JPNP16002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kawajiri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 302 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakiuchi, T., Yajima, T., Shigaki, N. et al. Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas. Adsorption 29, 9–27 (2023). https://doi.org/10.1007/s10450-022-00371-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-022-00371-x

Keywords

Navigation