Skip to main content
Log in

The binding interaction of protein on a charged surface using Poisson–Boltzmann equation: lysozyme adsorption onto SBA-15

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A modified Poisson–Boltzmann model (PBEm) can be successfully used to determine the binding strength parameter, i.e., (Henry constant, K), for the protein adsorbent interaction in ion-exchanger columns. Lysozyme has been employed as a standard protein for the adsorption in a mesoporous silica adsorbent. The density of aminoacid groups and silanol groups were used as inputs to calculate the protein charge density as a function of pH, salt concentration, and type of salt. Using the electrostatic potential provided as solving the PBEm with the protein charge surface and silanol wall as boundaries conditions, we calculated the K through the potential of mean force to describe the whole set of experimental data. The unique estimated parameter in this work was the volumetric accessible surface area from isotherm data for different electrolyte conditions. The results show that the protocol applied includes a pH and ionic strength dependence in the Langmuir isotherm. A sensibility test with different anions (\(\text {Cl}^{-}\), \(\text {Br}^{-}\), and \(\text {I}^{-}\)) showed an agreement with the Hofmeister series for the protein/adsorbent interaction. A modification in the electrolyte concentration and pH can change the behavior of the isotherm profile for a fixed value of saturation capacity, independently calculated for spheres packed in cylinders. The calculations provide here can be helpful for the optimization of the best condition for protein adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Santos, S.M.L.D., Nogueira, K.A.B., Gama, M.D.S., Lima, J.D.F., Silva Júnior, L.J.D., Azevedo, D.C.S.D.: Synthesis and characterization of ordered mesoporous silica (sba-15 and sba-16) for adsorption of biomolecules. Microporous Mesoporous Mater. 180, 284–292 (2013). https://doi.org/10.1016/j.micromeso.2013.06.043

    Article  CAS  Google Scholar 

  2. Regnier, F.: High-performance liquid chromatography of biopolymers. Science 222(4621), 245–252 (1983). https://doi.org/10.1126/science.6353575

    Article  CAS  PubMed  Google Scholar 

  3. Regnier, F.E., Mazsaroff, I.: A theoretical examination of adsorption processes in preparative liquid chromatography of proteins. Biotechnol. Prog. 3(1), 22–26 (1987). https://doi.org/10.1002/btpr.5420030105

    Article  CAS  Google Scholar 

  4. Brooks, C.A., Cramer, S.M.: Steric mass-action ion exchange: Displacement profiles and induced salt gradients. AIChE J. 38(12), 1969–1978 (1992). https://doi.org/10.1002/aic.690381212

    Article  CAS  Google Scholar 

  5. Iyer, H., Tapper, S., Lester, P., Wolk, B., van Reis, R.: Use of the steric mass action model in ion-exchange chromatographic process development. J. Chromatogr. A 832(1), 1–9 (1999). https://doi.org/10.1016/S0021-9673(98)01002-4

    Article  CAS  Google Scholar 

  6. Geng, X., Zebolsky, D.M.: The stoichiometric displacement model and Langmuir and Freundlich adsorption. J. Chem. Educ. 79(3), 385 (2002). https://doi.org/10.1021/ed079p385

    Article  CAS  Google Scholar 

  7. Osberghaus, A., Hepbildikler, S., Nath, S., Haindl, M., von Lieres, E., Hubbuch, J.: Determination of parameters for the steric mass action model-a comparison between two approaches. J. Chromatogr. A 1233, 54–65 (2012). https://doi.org/10.1016/j.chroma.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  8. Chen, W.D., Hu, H.H., Wang, Y.D.: Analysis of steric mass-action model for protein adsorption equilibrium onto porous anion-exchange adsorbent. Chem. Eng. Sci. 61(21), 7068–7076 (2006). https://doi.org/10.1016/j.ces.2006.07.036

    Article  CAS  Google Scholar 

  9. Gomes, P.F., Loureiro, J., Rodrigues, A.: Adsorption of human serum albumin (hsa) on a mixed-mode adsorbent: equilibrium and kinetics. Adsorption 23, 491–505 (2017). https://doi.org/10.1007/s10450-017-9861-x

    Article  CAS  Google Scholar 

  10. Nogueira, K.A.B.: Study of biomolecules adsorption (serum albumin bovine and lysozyme) in mesoporous materials. Master’s thesis, Department of Chemical Engineering - UFC, http://www.repositorio.ufc.br/handle/riufc/23216 (2016)

  11. Torres, M.A., Beppu, M.M., Santana, C.C.: Characterization of chemically modified chitosan microspheres as adsorbents using standard Proteins (bovine serum albumin and lysozyme). Braz. J. Chem. Eng. 24, 325–336 (2007)

    Article  CAS  Google Scholar 

  12. Tong, X.D., Dong, X.Y., Sun, Y.: Lysozyme adsorption and purification by expanded bed chromatography with a small-sized dense adsorbent. Biochem. Eng. J. 12(2), 117–124 (2002). https://doi.org/10.1016/S1369-703X(02)00063-3

    Article  CAS  Google Scholar 

  13. Salis, A., Ninham, B.: Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 43, 7358–7377 (2014). https://doi.org/10.1039/c4cs00144c

    Article  CAS  PubMed  Google Scholar 

  14. Tavares, F.W., Bratko, D., Blanch, H.W., Prausnitz, J.M.: Ion-specific effects in the colloid-colloid or protein-protein potential of mean force: Role of salt-macroion van der Waals interactions. J. Phys. Chem. B 108(26), 9228–9235 (2004). https://doi.org/10.1021/jp037809t

    Article  CAS  Google Scholar 

  15. Tavares, F.W., Bratko, D., Prausnitz, J.M.: The role of salt-macroion van der Waals interactions in the colloid–colloid potential of mean force. Current Opin. Colloid Interface Sci. 9(1), 81–86 (2004). https://doi.org/10.1016/j.cocis.2004.05.008

    Article  CAS  Google Scholar 

  16. Ståhlberg, J., Joensson, B., Horvath, C.: Theory for electrostatic interaction chromatography of proteins. Anal. Chem. 63(17), 1867–1874 (1991). https://doi.org/10.1021/ac00017a036

    Article  PubMed  Google Scholar 

  17. Parsegian, V., Gingell, D.: On the electrostatic interaction across a salt solution between two bodies bearing unequal charges. Biophys. J . 12(9), 1192–1204 (1972). https://doi.org/10.1016/S0006-3495(72)86155-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guélat, B., Ströhlein, G., Lattuada, M., Morbidelli, M.: Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen a. J. Chromatogr. A 1217(35), 5610–5621 (2010). https://doi.org/10.1016/j.chroma.2010.06.064

    Article  CAS  PubMed  Google Scholar 

  19. Guélat, B., Ströhlein, G., Lattuada, M., Delegrange, L., Valax, P., Morbidelli, M.: Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography. J. Chromatogr. A 1253, 32–43 (2012). https://doi.org/10.1016/j.chroma.2012.06.081

    Article  CAS  PubMed  Google Scholar 

  20. Moreira, L.A., Boström, M., Ninham, B.W., Biscaia, E.C., Tavares, F.W.: Effect of the ion–protein dispersion interactions on the protein–surface and protein–protein interactions. J. Braz. Chem. Soc. 18(1), 223–230 (2007). https://doi.org/10.1590/s0103-50532007000100026

    Article  CAS  Google Scholar 

  21. Lima, E.R.A., Biscaia, E.C., Boström, M., Tavares, F.W., Prausnitz, J.M.: Osmotic second virial coefficients and phase diagrams for aqueous proteins from a much-improved Poisson–Boltzmann equation. J. Phys. Chem. C 111(43), 16055–16059 (2007). https://doi.org/10.1021/jp074807q

    Article  CAS  Google Scholar 

  22. Alijó, P., Tavares, F., Biscaia, E., Jr.: Double layer interaction between charged parallel plates using a modified Poisson–Boltzmann equation to include size effects and ion specificity. Colloids Surf. A 412, 29–35 (2012). https://doi.org/10.1016/j.colsurfa.2012.07.008

    Article  CAS  Google Scholar 

  23. Lima, E.R.A., Tavares, F.W., Biscaia, E.C., Jr.: Finite volume solution of the modified Poisson–Boltzmann equation for two colloidal particles. Phys. Chem. Chem. Phys. 9, 3174–3180 (2007). https://doi.org/10.1039/B701170A

    Article  CAS  PubMed  Google Scholar 

  24. Carnie, S.L., Chan, D.Y., Stankovich, J.: Computation of forces between spherical colloidal particles: Nonlinear Poisson–Boltzmann theory. J. Colloid Interface Sci. 165(1), 116–128 (1994). https://doi.org/10.1006/jcis.1994.1212

    Article  CAS  Google Scholar 

  25. Gama, M., Simões Santos, M., Lima, E., Tavares, F., Barreto, A., Jr.: A modified Poisson–Boltzmann equation applied to protein adsorption. J. Chromatogr. A 1531, 74–82 (2018). https://doi.org/10.1016/j.chroma.2017.11.022

    Article  CAS  PubMed  Google Scholar 

  26. Vilarrasa-García, E., Cecilia, J., Santos, S., Cavalcante, C., Jiménez-Jiménez, J., Azevedo, D., Rodríguez-Castellón, E.: Co2 adsorption on aptes functionalized mesocellular foams obtained from mesoporous silicas. Microporous Mesoporous Mater. 187, 125–134 (2014). https://doi.org/10.1016/j.micromeso.2013.12.023

    Article  CAS  Google Scholar 

  27. Sadler, P.J., Tucker, A.: pH-induced structural transitions of bovine serum albumin. Eur. J. Biochem. 212(3), 811–817 (1993). https://doi.org/10.1111/j.1432-1033.1993.tb17722.x

    Article  CAS  PubMed  Google Scholar 

  28. Lu, J.R., Su, T.J., Howlin, B.J.: The effect of solution pH on the structural conformation of lysozyme layers adsorbed on the surface of water. J. Phys. Chem. B 103(28), 5903–5909 (1999). https://doi.org/10.1021/jp990129z

    Article  CAS  Google Scholar 

  29. Balme, S., Guegan, R., Janot, J., Jaber, M., Lepoitevin, M., Djardin, P., Bourrat, X., Motelica-Heino, M.: Structure, orientation and stability of lysozyme confined in layered materials. Soft Matter 9, 3188–3196 (2013). https://doi.org/10.1039/C3SM27880H

    Article  CAS  Google Scholar 

  30. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120(24), 6024–6036 (1998). https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  31. Ravikovitch, P.I., Neimark, A.V.: Characterization of micro- and mesoporosity in sba-15 materials from adsorption data by the nldft method. J. Phys. Chem. B 105(29), 6817–6823 (2001). https://doi.org/10.1021/jp010621u

    Article  CAS  Google Scholar 

  32. Travalloni, L., Castier, M., Tavares, F.W., Sandler, S.I.: Thermodynamic modeling of confined fluids using an extension of the generalized van der Waals theory. Chem. Eng. Sci. 65(10), 3088–3099 (2010). https://doi.org/10.1016/j.ces.2010.01.032

    Article  CAS  Google Scholar 

  33. Travalloni, L., Castier, M., Tavares, F.W.: Phase equilibrium of fluids confined in porous media from an extended Peng–Robinson equation of state. Fluid Phase Equilib. 362, 335–341 (2014). https://doi.org/10.1016/j.fluid.2013.10.049

    Article  CAS  Google Scholar 

  34. Barbosa, G.D., DLima, M.L., Daghash, S.M., Castier, M., Tavares, F.W., Travalloni, L.: Cubic equations of state extended to confined fluids: New mixing rules and extension to spherical pores. Chem. Eng. Sci. 184, 52–61 (2018). https://doi.org/10.1016/j.ces.2018.03.047

    Article  CAS  Google Scholar 

  35. Parsegian, V.: Van der waals forces: a handbook for biologists, chemists, engineers, and physicists. Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists pp. 1–380 (2005). https://doi.org/10.1017/CBO9780511614606

  36. Moon, P.H., Spencer, D.E.: Field Theory Handbook: Including Coordinate Systems, Differential Equations, and Their Solutions. Springer, Berlin (1961)

    Book  Google Scholar 

  37. Stankovich, J., Carnie, S.L.: Electrical double layer interaction between dissimilar spherical colloidal particles and between a sphere and a plate: Nonlinear Poisson–Boltzmann theory. Langmuir 12(6), 1453–1461 (1996). https://doi.org/10.1021/la950384k

    Article  CAS  Google Scholar 

  38. Ehrl, L., Jia, Z., Wu, H., Lattuada, M., Soos, M., Morbidelli, M.: Role of counterion association in colloidal stability. Langmuir 25(5), 2696–2702 (2009). https://doi.org/10.1021/la803445y

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J.Y., Han, I.: A semi-empirical equation for activity coefficients of ions with one parameter. Bull. Korean Chem. Soc. 34(12), 3709–3714 (2013). https://doi.org/10.5012/bkcs.2013.34.12.3709

    Article  CAS  Google Scholar 

  40. Pabst, T.M., Antos, D., Carta, G., Ramasubramanyan, N., Hunter, A.K.: Protein separations with induced pH gradients using cation-exchange chromatographic columns containing weak acid groups. J. Chromatogr. A 1181(1), 83–94 (2008). https://doi.org/10.1016/j.chroma.2007.12.054

    Article  CAS  PubMed  Google Scholar 

  41. Bonincontro, A., De Francesco, A., Onori, G.: Influence of pH on lysozyme conformation revealed by dielectric spectroscopy. Colloids Surf. B 12(1), 1–5 (1998). https://doi.org/10.1016/S0927-7765(98)00048-4

    Article  CAS  Google Scholar 

  42. Hagemann, A., Giussi, J.M., Longo, G.S.: Use of pH gradients in responsive polymer hydrogels for the separation and localization of proteins from binary mixtures. Macromolecules 51(20), 8205–8216 (2018). https://doi.org/10.1021/acs.macromol.8b01876

    Article  CAS  Google Scholar 

  43. Ide, M., El-Roz, M., De Canck, E., Vicente, A., Planckaert, T., Bogaerts, T., Van Driessche, I., Lynen, F., Van Speybroeck, V., Thybault-Starzyk, F., Van Der Voort, P.: Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols. Phys. Chem. Chem. Phys. 15, 642–650 (2013). https://doi.org/10.1039/C2CP42811C

    Article  CAS  PubMed  Google Scholar 

  44. Onizhuk, M., Panteleimonov, A., Kholin, Y., Ivanov, V.: Dissociation constants of silanol groups of silic acids: Quantum chemical estimations. J. Struct. Chem. 59, 261–271 (2018). https://doi.org/10.1134/S0022476618020026

    Article  CAS  Google Scholar 

  45. Leite, F.L., Bueno, C.C., Da Róz, A.L., Ziemath, E.C., Oliveira, O.N.: Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int. J. Mol. Sci. 13(10), 12773–12856 (2012). https://doi.org/10.3390/ijms131012773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leung, K., Nielsen, I.M.B., Criscenti, L.J.: Elucidating the bimodal acid–base behavior of the water–silica interface from first principles. J. Am. Chem. Soc. 131(51), 18358–18365 (2009). https://doi.org/10.1021/ja906190t

    Article  CAS  PubMed  Google Scholar 

  47. Kravchenko, A., Demianenko, E., Tsendra, O., Lobanov, V., Grebenyuk, A., Terets, M.: Simulation of the interaction between silica surface and acid or alkaline aqueous media. Collection 7(22), 36–41 (2015). ((In Ukrainian))

    Google Scholar 

  48. Yang, J., Su, H., Lian, C., Shang, Y., Liu, H., Wu, J.: Understanding surface charge regulation in silica nanopores. Phys. Chem. Chem. Phys. 22, 15373–15380 (2020). https://doi.org/10.1039/D0CP02152K

    Article  CAS  PubMed  Google Scholar 

  49. Salis, A., Bhattacharyya, M.S., Monduzzi, M.: Specific ion effects on adsorption of lysozyme on functionalized sba-15 mesoporous silica. J. Phys. Chem. B 114(23), 7996–8001 (2010). https://doi.org/10.1021/jp102427h

    Article  CAS  PubMed  Google Scholar 

  50. Franco, L.F.M., Pessôa Filho, P.D.A.: On the solubility of proteins as a function of pH: Mathematical development and application. Fluid Phase Equilibria 306(2), 242–250 (2011). https://doi.org/10.1016/j.fluid.2011.04.015

    Article  CAS  Google Scholar 

  51. Bhattacharyya, M.S., Hiwale, P., Piras, M., Medda, L., Steri, D., Piludu, M., Salis, A., Monduzzi, M.: Lysozyme adsorption and release from ordered mesoporous materials. J. Phys. Chem. C 114(47), 19928–19934 (2010). https://doi.org/10.1021/jp1078218

    Article  CAS  Google Scholar 

  52. Li, H., Robertson, A.D., Jensen, J.H.: Very fast empirical prediction and rationalization of protein pka values. Proteins 61(4), 704–721 (2005). https://doi.org/10.1002/prot.20660

    Article  CAS  PubMed  Google Scholar 

  53. Bas, D.C., Rogers, D.M., Jensen, J.H.: Very fast prediction and rationalization of pka values for protein-ligand complexes. Proteins 73(3), 765–783 (2008). https://doi.org/10.1002/prot.22102

    Article  CAS  PubMed  Google Scholar 

  54. Webb, H., Tynan-Connolly, B.M., Lee, G.M., Farrell, D., O’Meara, F., Søndergaard, C.R., Teilum, K., Hewage, C., McIntosh, L.P., Nielsen, J.E.: Remeasuring Hewl pka values by NMR spectroscopy: Methods, analysis, accuracy, and implications for theoretical pka calculations. Proteins 79(3), 685–702 (2011). https://doi.org/10.1002/prot.22886

    Article  CAS  PubMed  Google Scholar 

  55. Bonincontro, A., De Francesco, A., Onori, G.: Temperature-induced conformational changes of native lysozyme in aqueous solution studied by dielectric spectroscopy. Chem. Phys. Lett. 301(1), 189–192 (1999). https://doi.org/10.1016/S0009-2614(98)01460-2

    Article  CAS  Google Scholar 

  56. Kubiak, K., Mulheran, P.A.: Molecular dynamics simulations of hen egg white lysozyme adsorption at a charged solid surface. J. Phys. Chem. B 113(36), 12189–12200 (2009). https://doi.org/10.1021/jp901521x

    Article  CAS  PubMed  Google Scholar 

  57. Salvalaglio, M., Paloni, M., Guelat, B., Morbidelli, M., Cavallotti, C.: A two level hierarchical model of protein retention in ion exchange chromatography. J. Chromatogr. A 1411, 50–62 (2015). https://doi.org/10.1016/j.chroma.2015.07.101

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, J., Han, Y.T., Bu, X.L., Yue, X.F.: Study on the adsorption property of lysozyme on weak cation exchanger based on monodisperse poly(glycidymethacrylate-co-ethylenedimethacrylate) beads. J. Chromatogr. Sci. 51(2), 122–127 (2012). https://doi.org/10.1093/chromsci/bms115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP, Brazil) and PETROBRAS through the Clause of Investments in Research, Development, and Innovation. This study was financed by the National Council for Technological and Scientific Development (CNPq, Brazil) and the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil). The authors thank all the comments and suggestions from the reviewers that much improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Wanderley Tavares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gama, M.d.S., Barreto, A.G. & Tavares, F.W. The binding interaction of protein on a charged surface using Poisson–Boltzmann equation: lysozyme adsorption onto SBA-15. Adsorption 27, 1137–1148 (2021). https://doi.org/10.1007/s10450-021-00344-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00344-6

Keywords

Navigation