Skip to main content

Advertisement

Log in

Simulation and energy consumption comparison of gas purification system based on elevated temperature pressure swing adsorption in ammonia synthetic system

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Elevated temperature pressure swing adsorption (ET-PSA) is a novel process for hydrogen purification. By operating steam rinse and purge at conditions beyond the dew point will significantly improve the recovery rate of the product gas. Moreover, since cooling and reheating processes are not needed in ET-PSA, the sensible heat of the incoming gas could also be preserved. In this study, a seven-column 5000 Nm3/h ET-PSA pilot scale model was designed for energy consumption analysis. Product H2 purity, recovery rate, product CO2 purity, CO2 capture rate, unit H2 purification energy consumption and unit CO2 capture energy consumption were set as the criteria for assessing the purification performance. Rinse pressure, rinse media, and desorption method were selected as variables during the design and optimisation of the ET-PSA process. Herein, a high process efficiency (99.98% product gas purity and 99.33% recovery) was achieved. These values increased by 5.38% and 4.44%, respectively, compared to the base case. Meanwhile, the CO2 capture energy consumption was reduced by 59.2 MJ/ton(CO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ahn, S., You, Y.W., Lee, D.G., Kim, K.H., Oh, M., Lee, C.H.: Layered two- and four-bed PSA processes for H2 recovery from coal gas. Chem. Eng. Sci. 68(1), 413–423 (2012)

    Article  CAS  Google Scholar 

  • Andersson, J., Lundgren, J.: Techno-economic analysis of ammonia production via integrated biomass gasification. Appl. Energy 130, 484–490 (2014)

    Article  CAS  Google Scholar 

  • Anna Jr., H.R.S., Barreto, A.G., Tavares, F.W., do Nascimento, J.F.: Methane/nitrogen separation through pressure swing adsorption process from nitrogen-rich streams. Chem. Eng. Process. 103, 70–79 (2016)

    Article  Google Scholar 

  • Ashraf, O., Bashiri, H., Esmaeili, A., Sapoundjiev, H., Navarri, P.: Ejector integration for the cost efective design of the Selexol™ process. Energy 162, 380–392 (2018)

    Article  Google Scholar 

  • Cal, M.P., Strickler, B.W., Lizzio, A.A.: High temperature hydrogen sulfide adsorption on activated carbon I. Effects of gas composition and metal addition. Carbon 38, 1757–1765 (2000)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Agueda, V.I., Uguina, M.A., Sotelo, J.L., Brea, P.: Hydrogen recovery from of-gases with nitrogen-rich impurity by pressure swing adsorption using CaX and 5A zeolites. Adsorption 21, 107–123 (2015)

    Article  CAS  Google Scholar 

  • Ebner, A.D., Reynolds, S.P., Ritter, J.A.: Nonequilibrium kinetic model that describes the reversible adsorption and desorption behavior of CO2 in a K-promoted hydrotalcitelike compound. Ind. Eng. Chem. Res. 46(6), 1737–1744 (2007)

    Article  CAS  Google Scholar 

  • Gao, W., Zhou, T., Gao, Y., Louis, B., O’Hare, D., Wang, Q.: Molten salts-modifed MgO-based adsorbents for intermediate-temperature CO2 capture: a review. J. Energy Chem. 26, 830–838 (2017)

    Article  Google Scholar 

  • Gazzani, M., Macchi, E., Manzolini, G.: CO2 capture in integrated gasification combined cycle with SEWGS – Part A: thermodynamic performances. Fuel 105, 206–219 (2013)

    Article  CAS  Google Scholar 

  • Gershon, N.D., Nir, A.: Effects of boundary conditions of models on tracer distribution in flow through porous mediums. Water Resour. Res. 5(4), 830–839 (1969)

    Article  Google Scholar 

  • Hla, S.S., Park, D., Duffy, G.J., Edwards, J.H., Roberts, D.G., Ilyushechkin, A., et al.: Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases. Chem. Eng. J. 146(1), 148–154 (2009)

    Article  CAS  Google Scholar 

  • Jin, X., Malek, A., Farooq, S.: Production of argon from an oxygen argon mixture by pressure swing adsorption. Ind. Eng. Chem. Res. 45, 5775–5787 (2006)

    Article  CAS  Google Scholar 

  • Leon, M., Diaz, E., Bennici, S., Vega, A., Ordonez, S., Auroux, A.: Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind. Eng. Chem. Res. 49(8), 3663–3671 (2010)

    Article  CAS  Google Scholar 

  • Masurel, E., Wang, Z., Szabo, R., Corbet, S.: optimisation of the recti-sol TM design with packing: the recti-sol TM demonstration unit. Chem. Eng. Trans. 69, 127–132 (2018)

    Google Scholar 

  • McDowall, W., Eames, M.: Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: a review of the hydrogen futures literature. Energy Policy 34(11), 1236–1250 (2006)

    Article  Google Scholar 

  • Pescod, M.B.: Wastewater treatment and use in agriculture: irrigation with wastewater. Fao Irrigation & Drainage Paper, vol. 47. FAO, Rome (1992)

    Google Scholar 

  • Theo, W.L., Lim, J.S., Hashim, H., Mustaffa, A.A., Ho, W.S.: Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl. Energy 183, 1633–1663 (2016)

    Article  CAS  Google Scholar 

  • Veras, T.D., Mozer, T.S., dos Santos, D., Cesar, A.D.: Hydrogen: trends, production and characterization of the main process worldwide. Int. J. Hydrog. Energy 42(4), 2018–2033 (2017)

    Article  Google Scholar 

  • Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass-transfer coefficients in packed beds: correlation of Sherwood numbers. Chem. Eng. Sci. 33(10), 1375–1384 (1978)

    Article  CAS  Google Scholar 

  • Webley, P.A.: Adsorption technology for CO2 separation and capture: a perspective. Adsorption 20, 225–231 (2014)

    Article  CAS  Google Scholar 

  • Wehner, J.F., Wilhelm, R.H.: Boundary conditions of flow reactor. Chem. Eng. Sci. 6(2), 89–93 (1956)

    Article  CAS  Google Scholar 

  • Zhang, Y., Saleman, T.L., Li, G.K., Xiao, G., Young, B.R., May, E.F.: Non-isothermal numerical simulations of dual reflux pressure swing adsorption cycles for separating N2 + CH4. Chem. Eng. J. 292, 366–381 (2016)

    Article  CAS  Google Scholar 

  • Zhang, P., Tian, X., Fu, D.: CO2 removal in tray tower by using AAILs activated MDEA aqueous solution. Energy 161, 1122–1132 (2018)

    Article  CAS  Google Scholar 

  • Zhou, L., Lu, C.Z., Bian, S.J., Zhou, Y.P.: Pure hydrogen from the dry gas of refineries via a novel pressure swing adsorption process. Ind. Eng. Chem. Res. 41(21), 5290–5297 (2002)

    Article  CAS  Google Scholar 

  • Zhu, X., Wang, Q., Shi, Y., Cai, N.: Layered double oxide/activated carbon-based composite adsorbent for elevated temperature H2/CO2 separation. Int. J. Hydrog. Energy 40, 9244–9253 (2015)

    Article  CAS  Google Scholar 

  • Zhu, X., Shi, Y., Cai, N.: Characterization on trace carbon monoxide leakage in high purity hydrogen in sorption enhanced water gas shifting process. Int. J. Hydrog. Energy 41(40), 18050–18061 (2016a)

    Article  CAS  Google Scholar 

  • Zhu, X., Shi, Y., Cai, N.: Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption. Appl. Energy 176, 196–208 (2016b)

    Article  CAS  Google Scholar 

  • Zhu, X., Shi, Y., Cai, N.: High-pressure carbon dioxide adsorption kinetics of potassiummodified hydrotalcite at elevated temperature. Fuel 207, 579–590 (2017)

    Article  CAS  Google Scholar 

  • Zhu, X., Shi, Y., Cai, N.: Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas. Int. J. Hydrog. Energy 43(29), 13305–13317 (2018a)

    Article  CAS  Google Scholar 

  • Zhu, X., Shi, Y., Li, L., Cai, N.: Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production. Appl. Energy 229(1), 1061–1071 (2018b)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Key Research Development Program of China (No. 2018YFC0810001), the National Natural Science Foundation of China (No. 51806120), the Seed Fund of Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi province science and technology major projects (MH2015-06), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (201801D221352).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Li or Yixiang Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hao, P., Li, S. et al. Simulation and energy consumption comparison of gas purification system based on elevated temperature pressure swing adsorption in ammonia synthetic system. Adsorption 26, 1239–1252 (2020). https://doi.org/10.1007/s10450-020-00224-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00224-5

Keywords

Navigation