Skip to main content
Log in

Equilibrium, kinetics and thermodynamics study of phenols adsorption onto activated carbon obtained from lignocellulosic material (Eucalyptus Globulus labill seed)

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Activated carbon was prepared from lignocellulosic material (Eucalyptus Globulus labill seed) by chemical activation with ZnCl2 at two different concentrations (10 and 25 % m/v) named ACS25 and ACS10. The textural characteristics of the activated carbons (ACs) were determined by N2 adsorption isotherms; these exhibit B.E.T. surface areas of 250 and 300 m2 g−1 for ACS25 and ACS10, respectively, with micropore volume contents of 0.140 and 0.125 cm3 g−1 in the same order. In addition, the FTIR and Boehm methods were conducted for the chemical characterisation of ACs, where many groups with basic character were found, which favours the adsorption of phenols. The prepared carbonaceous adsorbents were used in the adsorption of wide pollutants monosubstituted phenol derivatives: phenol, 4-nitrophenol and 4-chlorophenol. The effect of temperature on the thermodynamics, kinetic and equilibrium of phenols adsorption on ACs was thoroughly examined. The adsorption kinetics adjusted properly for a pseudo-second-order kinetic model. However, the Elovich model (chemisorption) confirms that phenols adsorption did not occur via the sharing of electrons between the phenolic ring and basal plane of ACs because is not properly adjusted, so the process is given by physisorption. The thermodynamic parameters [i.e. Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°)] were also evaluated. The overall adsorption process was exothermic and spontaneous in nature. The values found in the thermodynamic study, confirm that the adsorption process corresponds to a clearly physical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(Q_{t}\) :

Amount of adsorbate adsorbed at time t (mg g−1)

\(K_{f}\) :

The pseudo-first-order rate constant (h−1),

t :

Time

\(K_{s}\) :

The pseudo-first-order rate constant (g gm−1 min−1)

\(\alpha\) :

Desorption constant in Elovich Equation

\(\beta\) :

Initial adsorption rate in Elovich Equation

\(k_{id}\) :

The intraparticle diffusion rate constant (mg g−1 h−1/2)

\(I\) :

Thickness of the boundary layer in intraparticle model of Weber and Morris

\(k\) :

Rate constant of adsorption of Dumwald–Warner model (min−1)

\(F\) :

Fractional attainment of equilibrium in the Dumwald-Warner model

\(k_{fd}\) :

Film diffusion rate coefficient in the Dumwald–Wagner mode

\(Q_{\hbox{max} }\) :

Maximum phenol uptake in Langmuir model

\(k_{L}\) :

Constant in Langmuir model that denoted the energy of adsorption and affinity of the binding sites (L mg−1)

\(k_{f}\) :

Constant in Freundlich model giving an indication of adsorption capacity [mg g−1 (L mg−1) n]

\(n\) :

Constant in Freundlich model giving an indication of adsorption intensity

\(Q_{mDRK}\) :

Amount adsorbed of solute on the monolayer in Dubinin–Radusckevisch–Kanager model

\(C_{s}\) :

Concentrations of equilibrium saturation in Dubinin–Radusckevisch–Kanager model

\(E_{S}\) :

Is related to the energy characteristic of the process in Dubinin–Radusckevisch–Kanager model

\(\varDelta G^{0}\) :

Gibbs free energy change of adsorption process

\(R\) :

R is the gas constant (8.314 J mol−1 K−1)

\(K_{o}\) :

K 0 is the apparent equilibrium constant, in this study the Langmuir constant was used

\(\varDelta S^{0}\) :

Entropy change of adsorption process

\(\varDelta H^{0}\) :

Enthalpy change of adsorption process

\(T\) :

Temperature in Kelvin

\(A\) :

Arrhenius factor

\(E_{a}\) :

Arrhenius activation energy of adsorption

References

  • Acharya, J., Sahu, J.N., Sahoo, B.K., Mohanty, C.R., Meikap, B.C.: Removal of Chromium (VI) from wastewater by activated carbon developed from Tamarind wood activated with Zinc Chloride. Chem. Eng. J. 150, 25–39 (2009)

    Article  CAS  Google Scholar 

  • Ahmaruzzaman, M., Sharma, D.: Adsorption of phenols from wastewater. Coll. Interface Sci. 287, 14–24 (2005)

    Article  CAS  Google Scholar 

  • Ahmaruzzaman, M., Laxmi, S.: Batch adsorption of 4-nitrophenol by acid activated jute stick char: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 158, 173–180 (2010)

    Article  CAS  Google Scholar 

  • Anisuzzaman, S.M., Bono, A., Krishnaiah D., Tan, Y.: A study on dynamic simulation of phenol adsorption in activated carbon packed bed column. J. King Saud Uni., 1–9 (2014)

  • Aljeboree, A., Alshirifi, A., Alkaim, A.: Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem. 30, 1–13 (2014)

    Google Scholar 

  • Al-Khateeb, L.A., Abdualah, Y., Asiri, A., Salam, M.: Adsorption behavior of estrogenic compounds on carbon nanotubes from aqueous solutions: kinetic and thermodynamic studies. J. Ind. Eng. Chem. 20, 916–924 (2014)

    Article  CAS  Google Scholar 

  • Arias, J.M., Paternina, E., Barragán, D.: Adsorción física sobre sólidos: aspectos termodinámicos. Quim. Nova 32(5), 1350–1355 (2009)

    Article  CAS  Google Scholar 

  • Ashraf, A., El-Bindary, A., Mostafa Hussien, A., Ahmed, M.E.: Adsorption of Acid Yellow 99 by polyacrylonitrile/activated carbon composite: kinetics, thermodynamics and isotherm studies. J. Mol. Liq. 197, 236–242 (2014)

    Article  CAS  Google Scholar 

  • Azevedo, D.C.S., Araújo, J.S., Bastos-Neto, M., Torres, E.B., Jaguaribe, E.F., Cavalcante, C.L.: Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater. 100, 361–364 (2007)

    Article  CAS  Google Scholar 

  • Azizian, S.: Comments on “Biosorption isotherms, kinetics and thermodynamics” review. Sep. Purif. Technol. 63(2), 249–250 (2008)

    Article  CAS  Google Scholar 

  • Babic, B.M., Milonjic, S.K., Polovina, M.J., Kaludierovic, B.V.: Point of zero charge and intrinsic equilibrium constants of activated carbon. Carbon 37, 477–481 (1999)

    Article  CAS  Google Scholar 

  • Blanchard, G., Maunaye, M., Martin, G.: Removal of heavy metals from waters by means of natural zeolites. Water Res. 18(12), 1501–1507 (1984)

    Article  CAS  Google Scholar 

  • Boparai, H.K., Joseph, M., O’carroll, D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano-zerovalent iron particles. J. Hazard. Mater. 186, 458–465 (2011)

    Article  CAS  Google Scholar 

  • Boehm, H.P.: Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 5, 759–769 (1994)

    Article  Google Scholar 

  • Boehm, H.P.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149 (2002)

    Article  CAS  Google Scholar 

  • Chandra, T.C., Mirna, M.M., Sunarso, J., Sudaryanto, Y., Ismadji, S.: Activated carbon from durian Shell. Preparation ad characterisation. J. Taiwan Inst. Chem. Eng. 40(4), 457–462 (2009)

    Article  CAS  Google Scholar 

  • Dabrowski, A., Podkoscielny, P., Hubicki, Z., Barczak, M.: Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58, 1049–1070 (2005)

    Article  CAS  Google Scholar 

  • Derylo-Marczewska, A., Marczewski, A.W., Winter, S.Z., Sternik, D.: Studies of adsorption equilibria and kinetics in the systems: aqueous solution of dyes–mesoporous carbons. Appl. Surf. Sci. 256(17), 5164–5170 (2010)

    Article  CAS  Google Scholar 

  • Douillard, J.M.: What can really be deduced from enthalpy of immersional wetting experiments? J. Coll. Interface Sci. 182(0468), 308–311 (1996)

    Article  CAS  Google Scholar 

  • Feng-Chin, W., Ru-Ling, T., Ruey-Shin, J.: Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009)

    Article  CAS  Google Scholar 

  • Gihan, F.M., El-Khaiary, M.I.: Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem. Eng. J. 163, 256–263 (2010)

    Article  CAS  Google Scholar 

  • Ho, Y.S.: Review of second-order models for adsorption systems. J. Hazard. Mater. 136(3), 681–689 (2006a)

    Article  CAS  Google Scholar 

  • Ho, Y.S.: Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40(1), 119–125 (2006b)

    Article  CAS  Google Scholar 

  • Ho, Y.S., McKay, G.: Pseudo-second-order model for sorption processes. Process Biochem. 34(5), 451–465 (1999)

    Article  CAS  Google Scholar 

  • Ho, Y.S., McKay, G.: The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34(3), 735–742 (2000)

    Article  CAS  Google Scholar 

  • Huang, N.Y., Gao, Q.L.: Qiao.: thermodynamics and kinetics of cadmium adsorption onto oxidised granular activated carbon. J. Environ. Sci. 19, 1287–1292 (2007)

    Article  CAS  Google Scholar 

  • Humpola, P., Odetti, H., Fertitta, A., Vicente, J.: Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons. J. Chil. Chem. Soc. 58, 1541–1544 (2013)

    Article  CAS  Google Scholar 

  • Kunwar, S., Amrita, M., Sarita, S., Priyanka, O.: Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J. Hazard. Mater. 150, 626–641 (2008)

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, S., Kumar, S., Gupta, D.: Adsorption of phenol and 4-nitrofenol on granular activated carbon in basal salt medium: equilibrium and kinetics. J. Hazard. Mater. 147, 155–166 (2007)

    Article  CAS  Google Scholar 

  • Leyva-Ramos, R., Geankoplis, C.J.: Diffusion in liquid-filled pores of activated carbon. I. Pore volume diffusion. Can. J. Chem. Eng. 72, 262–271 (1994)

    Article  CAS  Google Scholar 

  • Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., Xia, H.: Effects of carbonisation temperatures on characteristics of porosity in coconut shell chars and activated carbon derived from carbonised coconut shell chars. Ind. Crops Prod. 28(2), 190–198 (2008)

    Article  CAS  Google Scholar 

  • Lopez-Ramon, M., Stoeckli, F., Moreno-Castilla, C., Carrasco-Marin, F.: On the characterisation of acidic and basic surface sites on carbons by various techniques. Carbon 6, 1215–1221 (1999)

    Article  Google Scholar 

  • Lovera, R.: Caracterización Textural de Adsorbentes. Rev. Chil. ing Concepción. 6, 24–28 (2003)

    Google Scholar 

  • Khalilia, N.R., Campbella, M., Sandib, G., Golás, J.: Production of micro- and mesoporous activated carbon from paper mill sludge. I. Effect of zinc chloride activation. Carbon 38, 1905–1915 (2000)

    Article  Google Scholar 

  • Manasi, V., Rajesh, N.: Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between a microbe immobilised polysaccharide matrix and lead. Chem. Eng. J. 248, 342–351 (2014)

    Article  CAS  Google Scholar 

  • Martinez, M.J.: Adsorción física de gases y vapores por carbones, Alicante. España: Universidad de Alicante (Publicaciones) 27–30 (1988)

  • Mojica-Sanchez, L.C., Ramirez-Gomez, W.M., Rincon-Silva, N.G., Blanco-Martinez, D.A., Giraldo, L., Moreno-Pirajan, J.C.: Synthesis of activated carbon from Eucalyptus seed physical and chemical activation. Afinidad LXIX. 559, 203–210 (2012)

    Google Scholar 

  • Moreno-Castilla, C.: Adsorption of organic molecules from aqueous solutions on carbon material. Carbon 42, 83–94 (2004)

    Article  CAS  Google Scholar 

  • Moreno-Castilla, C., Rivera-Utrilla, J., Lopez-Ramon, M.V., Carrasco-Marin, F.: Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon 33(6), 845–851 (1995)

    Article  CAS  Google Scholar 

  • Mourao, P.A.M., Carrott, P.J.M., Ribeiro, M.M.L.: Application of different equations to adsorption isotherms of phenolic compounds on activated carbons prepared from cork. Carbon 44, 2422–2429 (2006)

    Article  CAS  Google Scholar 

  • Norhusna, M.N., Lau, L.C., Lee, K.T.: Mohamed. A.R.: Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control-a review. J. Environ. Chem. Eng. 1(4), 658–666 (2013)

    Article  CAS  Google Scholar 

  • Ocampo-Peréz, R., Leyva-Ramos, R.: Application of diffusional and kinetic models. Modelling the adsorption of pyridine onto granular activated carbon. Boletín del Grupo Español del Carbón. 30, 6–9 (2013)

    Google Scholar 

  • Okelo, F.O., Odebunmi, E.O.: Freundlich and Langmuir isotherms parameters for adsorption o methylene blue by activated carbon derived from agrowastes. Adv. Nat. Appl. Sci. 4(3), 281–288 (2010)

    Google Scholar 

  • Pakułaa, M., Swiatkowski, A., Walczykc, M., Biniak, S.: Voltammetric and FT-IR studies of modified activated carbon systems with phenol, 4-chlorophenol or 1,4-benzoquinone adsorbed from aqueous electrolyte solutions. Colloids Surf. A 260, 145–155 (2005)

    Article  CAS  Google Scholar 

  • Plazinski, W., Plazinska, A.: Equilibrium and kinetic modelling of adsorption at solid/solution interfaces. In: Bhatnagar, A. (ed.) Application of Adsorbents for Water Pollution Control. Bentham Science, Sharjah (2012)

    Google Scholar 

  • Plazinski, W., Dziuba, J., Rudzinski, W.: Modelling of sorption kinetics: the pseudo-second-order equation and the sorbate intraparticle diffusivity. Adsorption. 19, 1055–1064 (2013)

    Article  CAS  Google Scholar 

  • Qing-Song, L., Tong, Z., Peng, W., Ji-Ping, J., Nan, L.: Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibres. Chem. Eng. J. 157, 348–356 (2010)

    Article  CAS  Google Scholar 

  • Qiu, H., Lu, L., Bing-Cai, P., Zhang, Q., Zhang, W.M., Zhang. Q.X.: Critical review in adsorption kinetic models. J. Zhejiang Uni. Sci. A. 10, 716–724 (2009)

  • Rainbown, P.S.: Trace metal concentrations in aqueous vertebrates: why and so what? Env. Poll. 120, 497–507 (2002)

    Article  Google Scholar 

  • Rincon-Silva, N.G., Moreno-Piraján, J.C., Giraldo, L.: Thermodynamic study of adsorption of phenol, 4-chlorophenol and 4-nitrophenol on activated carbon obtained from eucalyptus seed. J. Chem. 2015, 01–12 (2015)

    Article  CAS  Google Scholar 

  • Rincon-Silva, N.G., Ramirez-Gomez, W.M, Mojica-Sánchez, L.C., Blanco-Martínez, D.A, Giraldo, L., Moreno-Piraján, J.C.: Obtaining of activated carbon from seeds of eucalyptus by chemical activation with H3PO4. Characterisation and evaluation of adsorption capacity of phenol from aqueous solution. Ingeniería y Competitividad. 16 (8), 207–219 (2014)

  • Rodriguez, G.A., Giraldo, L., Moreno, J.C.: Calorimetric study of the immersion enthalpies of activated carbon cloths in different solvents and aqueous solutions. J. Therm. Anal. Calorim. 96, 547–552 (2009)

    Article  CAS  Google Scholar 

  • Rodríguez-Reinoso, F., Linares-Solano, A.: Microporous structure of activated carbons as revealed by adsorption methods. Chem. Phys. Carbon 21, 140–146 (1989)

    Google Scholar 

  • Rodriguez-Reinoso, F.: Sólidos Porosos: preparación, Caracterización y Aplicaciones, Bogotá, Colombia: Ediciones Uniandes. El Carbón Activado como Adsorbente. I, 01–43 (2007)

  • Rudzinski, W., Plazinski, W.: Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second-order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. J. Phys. Chem. B 110(33), 16514–16525 (2006)

    Article  CAS  Google Scholar 

  • Saka, C.: BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal. Appl. Pyrol. 95, 21–24 (2012)

    Article  CAS  Google Scholar 

  • Siminiceanu, I., Marchitan, N., Duca, G., Mereuta, A.: Mathematical models based on thermodynamic equilibrium and kinetics of an ion exchange process. Rev. Chim. 61, 623–626 (2010)

    CAS  Google Scholar 

  • Stoeckli, F., Centeno, T.A., Donnet, J.B., Pusset, N., Papirer, E.: Characterisation of industrial activated carbons by adsorption and immersion techniques and by STM. Fuel 74(11), 1582–1588 (1995)

    Article  CAS  Google Scholar 

  • Stoeckli, F., Centeno, T.A.: On the characterisation of microporous carbons by immersion calorimetry alone. Carbon 35(8), 1097–1100 (1997)

    Article  CAS  Google Scholar 

  • Sun, K., Jian, J.C.: Preparation and characterisation of activated carbon from rubber-seed shell by physical activation. Biomass Bioenergy 34, 539–544 (2010)

    Article  CAS  Google Scholar 

  • Tancredi, N., Medero, N., Moller, F., Piritz, J., Plada, C., Cordero, T.: Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J. Coll. Interface Sci. 279, 357–363 (2004)

    Article  CAS  Google Scholar 

  • Theydana, S.K., Ahmed, M.J.: Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis 97, 116–122 (2012)

    Article  CAS  Google Scholar 

  • Tseng, R.L., Wu, K.T., Wu, F.C., Juang, R.S.: Kinetic studies on the adsorption of phenol, 4-chlorophenol and 2,4-dichlorophenol from water using activated carbons. J. Environ. Manag. 91, 2208–2214 (2010)

    Article  CAS  Google Scholar 

  • Valderrama, C., Barios, J.I., Caetano, M., Farran, A., Cortina, J.L.: Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hyper-cross-linked polymeric resin (MN200). React. Funct. Polym. 70, 142–150 (2010)

    Article  CAS  Google Scholar 

  • Wu, F.C., Tseng, R.L., Juang, R.S.: Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Master Agreement established between the ‘Universidad de los Andes’ and the ‘Universidad Nacional de Colombia’ and the Memorandum of Understanding entered into by the Departments of Chemistry of both Universities. Additionally, the authors are also thankful for financial support to the Additionally, the authors are also thankful for financial support to the convocation ‘Proyecto Semilla’ of the faculty of sciences of Universidad de los Andes in the category Master Student 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Giraldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincón-Silva, N.G., Moreno-Piraján, J.C. & Giraldo, L. Equilibrium, kinetics and thermodynamics study of phenols adsorption onto activated carbon obtained from lignocellulosic material (Eucalyptus Globulus labill seed). Adsorption 22, 33–48 (2016). https://doi.org/10.1007/s10450-015-9724-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9724-2

Keywords

Navigation