Skip to main content

Advertisement

Log in

Development of a system of natural gas storage governed by simultaneous processes of adsorption–desorption

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A system for natural gas storage was developed where energy effects involved in adsorption and desorption were combined through two concentric cylinders containing equal masses of activated carbon. The storage operating cycle was performed using methane feeding (compression/adsorption) in the internal cylinder, while simultaneously methane discharging (decompression/desorption) in the external cylinder. The charge and discharge operations were evaluated using the barometric technique at 298 K under storage pressures of 10, 30 and 60 bar, with flow rates of 1.14 × 10−3, 5.13 × 10−3 and 9.09 × 10−3 m3/min. The coaxial storage system provided faster pressure and temperature evolution toward equilibrium. A 50 % increase in the mass of gas stored under 60 bar was obtained when compared with the single storage tank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

d c,int :

Internal diameter of storage tank (m)

h c :

Height of storage tank (m)

m AC :

Mass of activated carbon (kg)

n ads CH4 :

Number of methane molecules adsorbed (mol)

n f,CH4 :

Number of moles of methane fed (mol)

n micro,CH4 :

Number of moles trapped in the micropores (mol)

n ext :

Number of moles compressed in the mesopores and macropores, and in the free space of the reservoir (mol)

q* CH4 :

Adsorbed methane at equilibrium

q IC CH4 , q ES CH4 , q ST CH4 :

Amount of adsorbed methane in the internal cylinder, external cylinder, single tank (kg/kg)

M :

Molar mass of the gas (kg/mol)

P :

Pressure (bar)

Q :

Flow rate (m3/min)

Q IC V/V , Q ES V/V , Q ST V/V :

Volumetric storage capacity in the internal cylinder, external cylinder, single tank (m3/m3)

T :

Temperature (K)

V S :

Specific volume of the adsorbent (m3/kg)

V P :

Specific pore volume (m3/kg)

V micro :

Specific volume of the micropores (m3/kg)

V micro,Q :

Specific volume of gas filled at the micropores (m3/kg)

Z :

Compressibility factor

ρ pc :

Packing density (kg/m3)

\(\varepsilon\) :

Porosity of the activated carbon

\(\varepsilon \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{s}\) :

Storage efficiency

References

  • Basumatary, R., Dutta, P., Prasad, M., Srinivasan, K.: Thermal modeling of activated carbon based adsorptive natural gas storage system. Carbon 43, 541–549 (2005)

    Article  CAS  Google Scholar 

  • Bastos-Neto, M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L.: A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas. Adsorption 11, 147–157 (2005)

    Article  CAS  Google Scholar 

  • Biloé, S., Goetz, V., Mauran, S.: Dynamic discharge and performance of a new adsorbent for natural gas storage. AIChE J. 47(12), 2819–2830 (2001)

    Article  Google Scholar 

  • Chang, K.J., Talu, O.: Behavior and experimental performance of adsorptive natural gas storage cylinders during discharge. Appl. Therm. Eng. 16(5), 359–374 (1996)

    Article  CAS  Google Scholar 

  • Do, D.D.: Dynamics of a semi-batch adsorber with constant molar supply rate: a method for studying adsorption rate of pure gases. Chem. Eng. Sci. 50(3), 549–553 (1995)

    Article  CAS  Google Scholar 

  • Gadipelli, S., Guo, Z.X.: Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)

    Article  CAS  Google Scholar 

  • Hirata, S.C., Couto, P., Larac, L.G., Cotta, R.M.: Modeling and hybrid simulation of slow discharge process of adsorbed methane tanks. Int. J. Therm. Sci. 48(6), 1176–1183 (2009)

    Article  CAS  Google Scholar 

  • Lozano-Castelló, D.D., Linares-Solano, A., Quinn, D.F.: Influence of pore size distribution on methane storage at relative low pressure: preparation of activated carbon with optimum pore size. Carbon 40, 989–1002 (2002)

    Article  Google Scholar 

  • Mason, J.A., Veenstra, M., Long, J.R.: Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014)

    Article  CAS  Google Scholar 

  • Matranga, K.R., Myers, A.L., Glandt, E.D.: Storage of natural gas by adsorption on activated carbon. Chem. Eng. Sci. 47(7), 1569–1791 (1992)

    Article  CAS  Google Scholar 

  • Mota, J.P.B.: Impact of gas composition on natural gas storage by adsorption. AIChE J. 45(5), 986–996 (1999)

    Article  CAS  Google Scholar 

  • Mota, J.P.B., Saatdjian, E., Tondeur, D., Rodrigues, A.E.: A simulation model of a high capacity methane adsorptive storage system. Adsorption 1, 17–27 (1995)

    Article  CAS  Google Scholar 

  • Prajwal, B.P., Ayappa, K.G.: Evaluating methane storage targets: from powder samples to onboard storage systems. Adsorption 20(5–6), 769–776 (2014)

    Article  CAS  Google Scholar 

  • Pupier, O., Goetz, V., Fiscal, R.: Effect of cycling operations on an adsorbed natural gas storage. Chem. Eng. Process. 44, 71–79 (2005)

    Article  CAS  Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn. McGraw-Hill, New York (1987)

    Google Scholar 

  • Santos, J.C., Marcondes, F., Gurgel, J.M.: Performance analysis of a new tank configuration applied to the natural gas storage systems by adsorption. Appl. Therm. Eng. 29(11–12), 2365–2372 (2009)

    Article  CAS  Google Scholar 

  • Stritih, U., Bombač, A.: Description and analysis of adsorption heat storage device. J. Mech. Eng. 60(10), 619–628 (2014)

    Article  Google Scholar 

  • Vasiliev, L.L., Kanonchik, L., Mishkinis, D., Rabetsky, M.: Adsorbed natural gas storage and transportation vessels. Int. J. Therm. Sci. 39, 1047–1055 (2000)

    Article  CAS  Google Scholar 

  • Walton, K.S., LeVan, M.D.: Natural gas storage cycles: influence of nonisothermal effects and heavy alkanes. Adsorption 12(3), 227–235 (2006)

    Article  CAS  Google Scholar 

  • Wegrzyn, J., Gurevich, M.: Adsorbent storage of natural gas. Appl. Energy 55(2), 71–831 (1996)

    Article  CAS  Google Scholar 

  • Yahia, S.B., Ouederni, A.: Hydrocarbons gas storage on activated carbons. Int. J. Chem. Eng. Appl. 3(3), 220–227 (2012)

    Google Scholar 

  • Yang, X.D., Zheng, Q.R., Gu, A.Z., Lu, X.S.: Experimental studies of the performance of adsorbed natural gas storage system during discharge. Appl. Therm. Eng. 25, 591–601 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge PPEQ/UFPE and CNPq, Brazil for the financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. M. Abreu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, R.G., Sales, D.C.S., Lima Filho, N.M. et al. Development of a system of natural gas storage governed by simultaneous processes of adsorption–desorption. Adsorption 21, 523–531 (2015). https://doi.org/10.1007/s10450-015-9691-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9691-7

Keywords

Navigation