Skip to main content
Log in

Stray field computation by inverted finite elements: a new method in micromagnetic simulations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new method for computing the stray-field and the corresponding energy for a given magnetization configuration. Our approach is based on the use of inverted finite elements and does not need any truncation. After analyzing the problem in an appropriate functional framework, we describe the method and we prove its convergence. We then display some computational results which demonstrate its efficiency and confirm its full potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Alliot, F.: Etude des équations stationnaires de Stokes et Navier-Stokes dans des domaines extérieurs. PhD Thesis, ENPC, Paris, (1998)

  2. Alouges, F.: Computation of the demagnetizing potential in micromagnetics using a coupled finite and infinite elements method. ESAIM: Control, Optimisation and Calculus of Variations 6, 629–647 (2001)

  3. Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(\textbf{R}^{n}\). J. Math. Pures Appl. (9), 73(6), 579–606 (1994)

  4. Berkov, D.V., Ramstöck, K., Hubert, A.: Solving micromagnetic problems: toward and optimal numerical method. Phys. Stat. Sol (a) 137, 207–225 (1993)

    Article  Google Scholar 

  5. Bettess, P.: Infinite elements. Internat. J. Numer. Methods Engrg. 11(1), 53–64 (1977)

    Article  Google Scholar 

  6. Bhowmik, S.K., Belbaki, R., Boulmezaoud, T.Z., Mziou, S.: Solving two dimensional second order elliptic equations in exterior domains using the inverted finite elements method. Comput. Math. Appl. 72(9), 2315–2333 (2016)

    Article  MathSciNet  Google Scholar 

  7. Blue, J.L., Scheinfein, M.R.: Using multipoles decreases computation time for magnetic self-energy. IEEE Trans. Magn. 27, 4778–4780 (1991)

    Article  Google Scholar 

  8. Boulmezaoud, T.Z.: A simple formula of the magnetic potential and of the stray field energy induced by a given magnetization. Math. Methods Appl. Sci., (submitted)

  9. Boulmezaoud, T.Z.: On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26(8), 633–669 (2003)

    Article  MathSciNet  Google Scholar 

  10. Boulmezaoud, T.Z.: Inverted finite elements: a new method for solving elliptic problems in unbounded domains. M2AN Math. Model. Numer. Anal. 39(1), 109–145 (2005)

  11. Boulmezaoud, T.Z., Kaliche, K., Kerdid, N.: Inverted finite elements for div-curl systems in the whole space. Adv. Comput. Math. 43(6), 1469–1489 (2017)

    Article  MathSciNet  Google Scholar 

  12. Boulmezaoud, T.Z., Mziou, S., Boudjedaa, B., Babatin, M.M.: Inverted finite elements for degenerate and radial elliptic problems in unbounded domains. Jpn. J. Ind. Appl. Math. 32(1), 237–261 (2015)

    Article  MathSciNet  Google Scholar 

  13. Boulmezaoud, T.Z., Mziou, S., Boudjedaa, T.: Numerical approximation of second-order elliptic problems in unbounded domains. J. Sci. Comput. 60(2), 295–312 (2014)

    Article  MathSciNet  Google Scholar 

  14. Burnett, D.S.: A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Amer. 96(5, part 1), 2798–2816 (1994)

  15. Carstensen, C., Prohl, A.: Numerical analysis of relaxed micromagnetics by penalised finite elements. Numer. Math. 90(1), 65–99 (2001)

    Article  MathSciNet  Google Scholar 

  16. Ciarlet, Ph.-G.: The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978)

  17. Class, A., Exl, L., Selke, G., Drews, A., Schrefl, Th.: Fast stray field computation on tensor grids. J. Magn. Magn. Mater. 176(326), (2013)

  18. Exl, L., Auzinger, W., Bance, S., Gusenbauer, M., Reichel, F., Schrefl, T.: Fast stray field computation on tensor grids. J. Comput. Phys. 231(7), 2840–2850 (2012)

    Article  MathSciNet  Google Scholar 

  19. Fredkin, D.R., Koehler, T.R.: Hybrid method for computing demagnetizing fields. IEEE Trans. Magn. 26, 415–417 (1990)

    Article  Google Scholar 

  20. Gerdes, K.: Infinite element methods. In: Geers, T.L. (eds) IUTAM symposium on computational methods for unbounded domains. Fluid mechanics and its applications 49(1-2), 143–150 (1998)

  21. Gerdes, K.: A summary of infinite element formulations for exterior Helmholtz problems. Comput. Methods Appl. Mech. Engrg. 164(1–2), 95–105 (1998)

    Article  MathSciNet  Google Scholar 

  22. Gerdes, K.: A review of infinite element methods for exterior Helmholtz problems. finite elements for wave problems. J. Comput. Acoust. 8(1), 43–62 (2000)

  23. Gerdes, K., Demkowicz, L.: Solution of \(3\)D-Laplace and Helmholtz equations in exterior domains using \(hp\)-infinite elements. Comput. Methods Appl. Mech. Engrg. 137(3–4), 239–273 (1996)

    Article  MathSciNet  Google Scholar 

  24. Giroire, J.: Etude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Thèse de Doctorat d’Etat. Université Pierre et Marie Curie, Paris (1987)

  25. Han, H., Bao, W.: The discrete artificial boundary condition on a polygonal artificial boundary for the exterior problem of Poisson equation by using the direct method of lines. Comput. Methods Appl. Mech. Engrg. 179(3–4), 345–360 (1999)

    Article  MathSciNet  Google Scholar 

  26. Han, H., Bao, W.: Error estimates for the finite element approximation of problems in unbounded domains. SIAM J. Numer. Anal. 37(4), 1101–1119 (2000)

    Article  MathSciNet  Google Scholar 

  27. Hanouzet, B.: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)

    MathSciNet  Google Scholar 

  28. Hubert, A., Schäfer, R.: Magnetic domains: the analysis of magnetic microstructures. Springer, (1998)

  29. Koehler, T.R., Fredkin, D.R.: Finite element methods for micromagnetism. IEEE Trans. Magn. 28, 1239–1244 (1992)

    Article  Google Scholar 

  30. Kruzík, M., Prohl, A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. Numer. Math. 48(3), 439–483 (2006)

    MathSciNet  Google Scholar 

  31. Labbé, S.: Fast computation for large magnetostatic systems adapted for micromagnetism. SIAM J. Sci. Comput. 26(6), 2160–2175 (2005)

    Article  MathSciNet  Google Scholar 

  32. Long, H., Ong, E., Liu, Z., Li, E.: Fast Fourier transform on multipoles for rapid calculation of magnetostatic fields. IEEE Trans. Magn. 42, 295–300 (2006)

    Article  Google Scholar 

  33. Luskin, M., Ma, L.: Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29(2), 320–331 (1992)

    Article  MathSciNet  Google Scholar 

  34. Miyazaki, T., Jin, H.: The physics of ferromagnetism. Springer, (2012)

  35. Nédélec, J.C.: Acoustic and electromagnetic equations, vol. 144 of Applied Mathematical Sciences. Springer-Verlag, New York, 2001. Integral representations for harmonic problems

  36. Popović, N., Praetorius, D.: Applications of \(H\)-matrix techniques in micromagnetics. Computing 74(3), 177–204 (2005)

    Article  MathSciNet  Google Scholar 

  37. Prohl, A.: Computational micromagnetism. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (2001)

Download references

Funding

This work was partially supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahar Z. Boulmezaoud.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Gianluigi Rozza

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Solving the problem in the case of an inhomogeneously magnetized ball (numerical example 2)

Appendix A: Solving the problem in the case of an inhomogeneously magnetized ball (numerical example 2)

The resolution of the system in the case of a ball \(B_{r_0}\) and \( {\varvec{M}}\) given by (57) can be done by means of a decomposition on spherical harmonics \((Y_\ell ^m)_{\ell \geqslant 0, -\ell \leqslant m \leqslant \ell }\) (which is orthonormal with respect to the inner product in \(L^2({\mathbb S}^2)\)). We have outside the ball \(B_{r_0}\):

$$ \Delta u = 0\,\, \text{ in }\,\, {\mathbb R}^3 \backslash \overline{B}_{r_0}. $$

Developing u on the basis of spherical harmonics gives (see, e.g., [35]):

$$ u( {\varvec{x}}) = \sum _{\ell = 0}^{+\infty } \sum _{m=-\ell }^\ell A_\ell ^m \left( \frac{r}{{r_0}}\right) ^{-\ell -1} Y_\ell ^m( \varphi , \theta ). $$

where \((A_\ell ^m)_{\ell \geqslant 0, -\ell \leqslant m \leqslant \ell }\) is a sequence of complex coefficients. On the other hand, we have in the interior of the ball

$$ \Delta u = \textrm{div}\, {\varvec{M}}= 2 \frac{\cos \theta }{r} = \frac{\alpha }{r} Y_1^0(\varphi , \theta ) \text{ in } \overline{B}_{r_0}, \; \; \text{ with } \alpha = 4 \sqrt{\frac{\pi }{3}}. $$
Fig. 8
figure 8

(Example 3) The computed energy of an homogeneously magnetized unit cube

Writing

$$ u ( {\varvec{x}}) = \sum _{\ell = 0}^{+\infty } \sum _{m=-\ell }^\ell u_\ell ^m(r) Y_\ell ^m ( \varphi , \theta ), \text{ in } \overline{B}_{r_0}, $$

gives:

$$ \frac{1}{r^2} \frac{d}{dr } (r^2 \frac{d u_\ell ^m }{dr }) (r) - \frac{\ell (\ell + 1) }{r^2} u_\ell ^m(r) = \frac{\alpha }{r} \delta _{\ell , 1} \delta _{m, 0} \text{ for } \text{ all } \ell \geqslant 0 \text{ and } -\ell \leqslant m \leqslant \ell , $$

where \(\delta _{i, j}\), \(i \in {\mathbb N}\), \(j \in {\mathbb N}\), denotes the usual Kronecker delta. The solutions of these equations are of the form

$$ u_\ell ^m (r) = B_\ell ^m \left( \frac{r}{{r_0}}\right) ^{\ell } + C_\ell ^m \left( \frac{r}{{r_0}}\right) ^{-\ell -1} + \frac{\alpha }{3} r \ln ( \frac{r}{{r_0}}) \delta _{\ell , 1} \delta _{m, 0}, $$

where \(B_\ell ^m\) and \(C_\ell ^m\) are constants. Since \(u \in W^1_0({\mathbb R}^3)\), we deduce that \(u_{B_{r_0}} \in H^1(B_{r_0})\). Necessarily \(C_\ell ^m = 0\) for all \(\ell \geqslant 0\) and \(|m| \leqslant \ell \). Since \([u]_{\partial \Omega } = 0\), we deduce that \( B_\ell ^m = A_\ell ^m\) for all \(\ell \geqslant 0\) and \(|m| \leqslant \ell \). In addition,

$$ \left[ \frac{\partial u}{\partial r} \right] _{\partial \Omega } = - {\varvec{M}}\cdot {\varvec{n}}= - {\varvec{M}}\cdot {\varvec{e}}_r = 0. $$

Thus, for all \(\ell \geqslant 0\) and \(|m| \leqslant \ell \), we have

$$ \ell \frac{B^m_\ell }{{r_0}} + \frac{ \alpha }{3} \delta _{\ell , 1} \delta _{m, 0} = -\frac{ \ell + 1 }{{r_0}} A^m_\ell . $$

Thus, \(A_l^m = B_l^m=0\) for \((\ell , m) \ne (1, 0)\) and

$$ A_1^0 = B_1^0 = - \frac{\alpha {r_0}}{9}. $$

Thus, if \(| {\varvec{x}}| \geqslant {r_0}\) then

$$ u( {\varvec{x}}) = A_1^0 \left( \frac{{r_0}}{r}\right) ^{2} Y_1^0 = - \frac{{r_0}^3}{9 r^2} \alpha Y_1^0 = - \frac{2 {r_0}^3 \cos \theta }{9 r^2} = - \frac{2 {r_0}^3 z }{9 r^3}. $$

and

$$ \Vert \nabla u\Vert ^2_{L^2({\mathbb R}^3 \backslash \overline{B}_{r_0})} = \frac{32 \pi }{243}{r_0}^3. $$

If \(| {\varvec{x}}| \leqslant {r_0}\) then

$$ u ( {\varvec{x}}) = (B_1^0 \frac{r}{{r_0}} +\frac{\alpha }{3} r \ln ( \frac{r}{{r_0}})) Y_1^0 = ( - \frac{r}{9} + \frac{r}{3} \ln ( \frac{r}{{r_0}})) \alpha Y_1^0= \frac{2 r \cos \theta }{9} ( - 1 + 3 \ln ( \frac{r}{{r_0}})). $$

Thus,

$$ u = \frac{2 z }{9} ( - 1 + 3 \ln ( \frac{r}{{r_0}})), $$

and

$$ \Vert \nabla u\Vert ^2_{L^2( \overline{B}_{r_0})} =\frac{64 \pi }{243}{r_0}^3. $$

Thus, the energy of the corresponding stray field is

$$ {\mathscr {E}}_{sf} (u) = \frac{1}{2} \int _{{r_0}^3} |\nabla u|^2 dx = \frac{16}{81} \pi {r_0}^3. $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulmezaoud, T.Z., Kaliche, K. Stray field computation by inverted finite elements: a new method in micromagnetic simulations. Adv Comput Math 50, 44 (2024). https://doi.org/10.1007/s10444-024-10139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10139-2

Keywords

Mathematics Subject Classification

Navigation