Skip to main content
Log in

Robust low tubal rank tensor recovery using discrete empirical interpolation method with optimized slice/feature selection

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we extend the Discrete Empirical Interpolation Method (DEIM) to the third-order tensor case based on the t-product and use it to select important/significant lateral and horizontal slices/features. The proposed Tubal DEIM (TDEIM) is investigated both theoretically and numerically. In particular, the details of the error bounds of the proposed TDEIM method are derived. The experimental results show that the TDEIM can provide more accurate approximations than the existing methods. An application of the proposed method to the supervised classification task is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used in the numerical experiments are available at http://trace.eas.asu.edu/yuv/ and http://yann.lecun.com/exdb/mnist/.

References

  1. Beltrami, E.: Sulle funzioni bilineari. Giornale di Matematiche ad Uso degli Studenti Delle Universita 11(2), 98–106 (1873)

  2. Jordan, C.: Mémoire sur les formes bilinéaires. Journal de mathématiques pures et appliquées 19, 35–54 (1874)

    Google Scholar 

  3. Jordan, C.: Essai sur la géométrie à \( n \) dimensions. Bulletin de la Société mathématique de France 3, 103–174 (1875)

    Article  MathSciNet  Google Scholar 

  4. Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35(4), 551–566 (1993)

    Article  MathSciNet  Google Scholar 

  5. Tyrtyshnikov, E.: Incomplete cross approximation in the mosaic-skeleton method. Computing 64(4), 367–380 (2000)

    Article  MathSciNet  Google Scholar 

  6. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261(1–3), 1–21 (1997)

    Article  MathSciNet  Google Scholar 

  7. Mahoney, M.W., et al.: Randomized algorithms for matrices and data, Foundations and Trends® in Machine Learning 3(2), 123–224 (2011)

  8. Goreinov, S. A., Oseledets, I. V., Savostyanov, D.V., Tyrtyshnikov, E.E., Zamarashkin, N.L.: How to find a good submatrix, in: Matrix Methods: Theory, Algorithms And Applications: Dedicated to the Memory of Gene Golub, World Scientific, pp. 247–256 (2010)

  9. Sorensen, D.C., Embree, M.: A DEIM induced CUR factorization. SIAM J. Sci. Comput 38(3), A1454–A1482 (2016)

    Article  MathSciNet  Google Scholar 

  10. Savostyanov, D.: Polilinear approximation of matrices and integral equations, Ph. D. dissertation, Dept. Math., INM RAS, Moscow, Russia (2006)

  11. Van Loan, C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13(1), 76–83 (1976)

    Article  MathSciNet  Google Scholar 

  12. Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18(3), 398–405 (1981)

    Article  MathSciNet  Google Scholar 

  13. Gidisu, P.Y., Hochstenbach, M.E.: A generalized CUR decomposition for matrix pairs. SIAM J. Math. Data Sci. 4(1), 386–409 (2022)

    Article  MathSciNet  Google Scholar 

  14. Gidisu, P.Y., Hochstenbach, M. E.: A restricted SVD type CUR decomposition for matrix triplets, arXiv preprint arXiv:2204.02113 (2022)

  15. Oseledets, I.V., Savostianov, D., Tyrtyshnikov, E.E.: Tucker dimensionality reduction of three-dimensional arrays in linear time. SIAM J. Matrix Anal. Appl. 30(3), 939–956 (2008)

    Article  MathSciNet  Google Scholar 

  16. Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010)

    Article  MathSciNet  Google Scholar 

  17. Caiafa, C.F., Cichocki, A.: Generalizing the column-row matrix decomposition to multi-way arrays. Linear Algebra Appl. 433(3), 557–573 (2010)

    Article  MathSciNet  Google Scholar 

  18. Drineas, P., Mahoney, M.W.: A randomized algorithm for a tensor-based generalization of the singular value decomposition. Linear Algebra Appl. 420(2–3), 553–571 (2007)

    Article  MathSciNet  Google Scholar 

  19. Tarzanagh, D.A., Michailidis, G.: Fast randomized algorithms for t-product based tensor operations and decompositions with applications to imaging data. SIAM J. Imaging Sci. 11(4), 2629–2664 (2018)

    Article  MathSciNet  Google Scholar 

  20. Tucker, L.R., et al.: The extension of factor analysis to three-dimensional matrices, Contributions to mathematical psychology 110119 (1964)

  21. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  22. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  24. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1–4), 164–189 (1927)

    Article  Google Scholar 

  25. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7(1–4), 39–79 (1928)

    Article  Google Scholar 

  26. Ahmadi-Asl, S., Caiafa, C.F., Cichocki, A., Phan, A.H., Tanaka, T., Oseledets, I., Wang, J.: Cross tensor approximation methods for compression and dimensionality reduction. IEEE Access 9, 150809–150838 (2021)

    Article  Google Scholar 

  27. Ahmadi-Asl, S., Asante-Mensah, M.G., Cichocki, A., Phan, A.H., Oseledets, I., Wang, J.: Cross tensor approximation for image and video completion, arXiv preprint arXiv:2207.06072 (2022)

  28. Saibaba, A.K.: Hoid: higher order interpolatory decomposition for tensors based on tucker representation. SIAM J. Matrix Anal. Appl. 37(3), 1223–1249 (2016)

    Article  MathSciNet  Google Scholar 

  29. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  30. Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    Article  MathSciNet  Google Scholar 

  31. Jiang, T.X., Ng, M.K., Zhao, X.L., Huang, T.Z.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)

    Article  MathSciNet  Google Scholar 

  32. Li, B.Z., Zhao, X.L., Ji, T.Y., Zhang, X.J., Huang, T.Z.: Nonlinear transform induced tensor nuclear norm for tensor completion. J. Sci. Comput. 92(3), 83 (2022)

    Article  MathSciNet  Google Scholar 

  33. Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27(3), e2299 (2020)

    Article  MathSciNet  Google Scholar 

  34. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell 42(4), 925–938 (2019)

    Article  Google Scholar 

  35. Zhang, J., Saibaba, A.K., Kilmer, M.E., Aeron, S.: A randomized tensor singular value decomposition based on the t-product. Numer. Linear Algebra Appl. 25(5), e2179 (2018)

    Article  MathSciNet  Google Scholar 

  36. Martin, C.D., Shafer, R., LaRue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013)

    Article  MathSciNet  Google Scholar 

  37. Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6(1), 437–463 (2013)

    Article  MathSciNet  Google Scholar 

  38. Hamm, K., Huang, L.: Perspectives on cur decompositions. Appl. Comput. Harmon. Anal. 48(3), 1088–1099 (2020)

    Article  MathSciNet  Google Scholar 

  39. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error CUR matrix decompositions. SIAM J. Matrix Anal. Appl. 30(2), 844–881 (2008)

    Article  MathSciNet  Google Scholar 

  40. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9), 667–672 (2004)

  41. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  Google Scholar 

  42. Gidisu, P.Y., Hochstenbach, M.E.: A hybrid DEIM and leverage scores based method for CUR index selection, In: Progress in Industrial Mathematics at ECMI 2021, Springer, pp. 147–153 (2022)

  43. Ahmadi-Asl, S.: An efficient randomized fixed-precision algorithm for tensor singular value decomposition, Communications on Applied Mathematics and Computation 1–20 (2022)

  44. Ahmadi-Asl, S.: A randomized algorithm for tensor singular value decomposition using an arbitrary number of passes, arXiv preprint arXiv:2207.12542 (2022)

  45. Lee, T.S.: Image representation using 2d gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)

    Article  Google Scholar 

  46. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction, Vol. 2, Springer, (2009)

  47. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the editors and two reviewers for their insightful comments, which have greatly elevated the paper’s quality.

Funding

This work was partially funded by the Ministry of Education and Science (grant 075.10.2021.068). Cesar F. Caiafa work was partially supported by grants PICT 2020-SERIEA-00457 and PIP 112202101 00284CO (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ahmadi-Asl.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Raymond H. Chan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi-Asl, S., Phan, AH., Caiafa, C.F. et al. Robust low tubal rank tensor recovery using discrete empirical interpolation method with optimized slice/feature selection. Adv Comput Math 50, 23 (2024). https://doi.org/10.1007/s10444-024-10117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10117-8

Keywords

Mathematics Subject Classification (2010)

Navigation