Skip to main content
Log in

Improvement of hierarchical matrices for 3D elastodynamic problems with a complex wavenumber

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is well known in the literature that standard hierarchical matrix (\({\mathscr{H}}\)-matrix)-based methods, although very efficient for asymptotically smooth kernels, are not optimal for oscillatory kernels. In a previous paper, we have shown that the method should nevertheless be used in the mechanical engineering community due to its still important data compression rate and its straightforward implementation compared to \({\mathscr{H}}^{2}\)-matrix, or directional, approaches. Since in practice, not all materials are purely elastic, it is important to be able to consider visco-elastic cases. In this context, we study the effect of the introduction of a complex wavenumber on the accuracy and efficiency of \({\mathscr{H}}\)-matrix-based fast methods for solving dense linear systems arising from the discretization of the elastodynamic (and Helmholtz) Green’s tensors. Interestingly, such configurations are also encountered in the context of the solution of transient purely elastic problems with the convolution quadrature method. Relying on the theory proposed in Börm et al. (IMA Journal of Numerical Analysis 12, 2020) for \({\mathscr{H}}^{2}\)-matrices for Helmholtz problems, we study the influence of the introduction of damping on the data compression rate of standard \({\mathscr{H}}\)-matrices. We propose an improvement of \({\mathscr{H}}\)-matrix-based fast methods for this kind of configuration and illustrate how the introduction of a complex wavenumber can, as expected, improve further the efficiency of such methods. This work is complementary to the recent report (Börm et al., IMA Journal of Numerical Analysis 12, 2020). Here, in addition to addressing another physical problem, we consider standard \({\mathscr{H}}\)-matrices, derive a simple criterion to introduce additional compression and we perform extensive numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banjai, L., Hackbusch, W.: Hierarchical matrix techniques for low-and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28(1), 46–79 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bebendorf, M.: Hierarchical Matrices. Springer (2008)

  3. Bebendorf, M., Kuske, C., Venn, R.: Wideband nested cross approximation for Helmholtz problems. Numer. Math. 130(1), 1–34 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bonnet, M.: Boundary Integral Equations Methods in Solids and Fluids. Wiley (1999)

  6. Börm, S.: Data-sparse approximation of non-local operators by h2-matrices. Linear Algebra Applic. 422(2-3), 380–403 (2007)

    Article  Google Scholar 

  7. Börm, S.: Directional-matrix compression for high-frequency problems. Numer. Linear Algebra Applic. 24(6), e2112 (2017)

    Article  MathSciNet  Google Scholar 

  8. Börm, S., Christophersen, S.: Approximation of integral operators by Green quadrature and nested cross approximation. Numer. Math. 133(3), 409–442 (2016)

    Article  MathSciNet  Google Scholar 

  9. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elements 27(5), 405–422 (2003)

    Article  Google Scholar 

  10. Börm, S.: Fast large-scale boundary element algorithms. arXiv:2001.05523 [cs, math] (2020)

  11. Börm, S., Börst, C.: Hybrid matrix compression for high-frequency problems. SIAM J. Matrix Anal. Applic. 41(4), 1704–1725 (2020). Society for Industrial and Applied Mathematics

    Article  MathSciNet  Google Scholar 

  12. Börm, S., Lopez-Fernandez, M., Sauter, S.A.: Variable order, directional \({\mathscr{H}}^{2}\)-matrices for Helmholtz problems with complex frequency. IMA Journal of Numerical Analysis, 12. draa046 (2020)

  13. Chaillat, S., Bonnet, M.: Recent advances on the fast multipole accelerated boundary element method for 3d time-harmonic elastodynamics. Wave Motion 50(7), 1090–1104 (2013)

    Article  MathSciNet  Google Scholar 

  14. Chaillat, S., Desiderio, L., Ciarlet, P.: Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels. J. Comput. Phys. 351, 165–186 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ciarlet, P.G.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press (1989)

  16. Darve, E.: The fast multipole method: Numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000)

    Article  MathSciNet  Google Scholar 

  17. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. JHU Press (2012)

  18. Grasso, E.: Modelling visco-elastic seismic wave propagation: a fast-multipole boundary element method and its coupling with finite elements. phdthesis. Université Paris-Est (2012)

  19. Grasso, E., Chaillat, S., Bonnet, M., Semblat, J.F.: Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics. Eng. Anal. Bound. Elements 36(5), 744–758 (2012)

    Article  MathSciNet  Google Scholar 

  20. Greengard, L., Huang, J., Rokhlin, V., Wandzura, S.: Accelerating fast multipole methods for the Helmholtz equation at low frequencies. IEEE Comput. Sci. Eng. 5(3), 32–38 (1998)

    Article  Google Scholar 

  21. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  Google Scholar 

  22. Hackbusch, W.: A sparse matrix arithmetic based on \({\mathscr{H}}\)-matrices. Part I: Introduction to \({\mathscr{H}}\)-matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  Google Scholar 

  23. Hackbusch, W: Hierarchical Matrices: Algorithms and Analysis, vol. 49. Springer (2015)

  24. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)

    Article  MathSciNet  Google Scholar 

  25. Liu, Y.J., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradhar, A., Pan, E., Dumont, N.A., Frangi, A., Saez, A.: Recent advances and emerging applications of the boundary element method. Appl. Mech. Rev., 64(3) (2011)

  26. Lopez-Fernandez, M., Sauter, S.: Generalized convolution quadrature with variable time stepping. IMA J. Numer. Anal. 33(4), 1156–1175 (2013). Conference Name: IMA Journal of Numerical Analysis

    Article  MathSciNet  Google Scholar 

  27. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  28. Lubich, C.: Convolution quadrature and discretized operational calculus. I II. Numer. Math. 52(4), 413–425 (1988)

    Article  MathSciNet  Google Scholar 

  29. Mavaleix-Marchessoux, D., Bonnet, M., Chaillat, S., Leblé, B.: A fast BEM procedure using the Z-transform and high-frequency approximations for large-scale 3D transient wave problems. International Journal for Numerical Methods in Engineering. Wiley (2020)

  30. Messner, M., Schanz, M., Darve, E.: Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys. 231(4), 1175–1196 (2012)

    Article  MathSciNet  Google Scholar 

  31. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)

    Article  MathSciNet  Google Scholar 

  32. Sauter, S.: Variable order panel clustering. Computing 64(3), 223–261 (2000)

    Article  MathSciNet  Google Scholar 

  33. Sauter, S.A., Schwab, C.: Boundary element methods. In: Boundary Element Methods, pp. 183–287. Springer (2010)

  34. Schanz, M.: Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids. Eng. Anal. Bound. Elem 25(4), 363–376 (2001)

    Article  Google Scholar 

  35. Schanz, M., Antes, H.: A new visco- and elastodynamic time domain boundary element formulation. Comput. Mech. 20(5), 452–459 (1997)

    Article  MathSciNet  Google Scholar 

  36. Semblat, J.-F., Luong, M.P.: Wave propagation through soils in centrifuge testing. J. Earthquake Eng. 02(01), 147–171 (1998). Imperial College Press

    Google Scholar 

  37. Wilkes, D.R., Duncan, A.J.: A low frequency elastodynamic fast multipole boundary element method in three dimensions. Comput. Mech. 56(5), 829–848 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Chaillat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Michael O’Neil

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Advances in Computational Integral Equations

Guest Editors: Stephanie Chaillat, Adrianna Gillman, Per-Gunnar Martinsson, Michael O’Neil, Mary-Catherine Kropinski, Timo Betcke, Alex Barnett

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagur, L., Chaillat, S. & Ciarlet, P. Improvement of hierarchical matrices for 3D elastodynamic problems with a complex wavenumber. Adv Comput Math 48, 9 (2022). https://doi.org/10.1007/s10444-021-09921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09921-3

Keywords

Mathematics Subject Classification (2010)

Navigation