Skip to main content
Log in

Mechanical Stability of Carbon/Ramie Fiber Hybrid Composites Under Hygrothermal Aging

  • Research
  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Hybrid composites containing carbon fibers and ramie fibers in an epoxy polymer matrix were prepared (denoted as CRFRP), after which the composites were immersed in distilled water at three different temperatures (20, 40, and 60 °C) for a period up to 2 months. Water absorption tests and static (tensile and flexural) and dynamic (low-velocity impact) mechanical tests were then conducted on the hygrothermally-treated composites to explore their hydrothermal aging mechanism. Results show that water uptake by CRFRP composites was enhanced by increasing the hygrothermal treatment temperature or aging time, with the water uptake obeying a Fickian diffusion model. Hygrothermal aging decreased the tensile strength, tensile modulus, flexural strength and flexural modulus of the CRFRP composites, though enhanced the impact absorption energy since the ramie fibers had greater plasticity and deformability after aging. Based on the experimental findings, a plausible mechanism was developed for the hydrothermal aging of the hybrid composites. Importantly, CRFRP composites were lighter than carbon fiber-reinforced composites (CFRP), whilst offering similar all-round performance, suggesting CRFRP composites may be useful in applications where CFRP composites have traditionally been used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this manuscript.

References

  1. Mai, A.D., Sheikh, M.N., Hadi, M.N.S.: Failure envelopes of square and circularized RC columns discretely confined with CFRP. Constr. Build. Mater. 261, (2020)

  2. Xian, G., Guo, R., Li, C., Hong, B.: Effects of rod size and fiber hybrid mode on the interface shear strength of carbon/glass fiber composite rods exposed to freezing-thawing and outdoor environments. J. Mater. Res. Technol. 14, 2812–2831 (2021)

    Article  CAS  Google Scholar 

  3. Bodros, E., Pillin, I., Montrelay, N., Baley, C.: Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol. 67, 462–470 (2007)

    Article  CAS  Google Scholar 

  4. Jeyapragash, R., Srinivasan, V., Sathiyamurthy, S.: Mechanical properties of natural fiber/particulate reinforced epoxy composites – A review of the literature. Mater. Today Proc. 22, 1223–1227 (2020)

    Article  CAS  Google Scholar 

  5. grandviewresearch.: https://www.grandviewresearch.com/industry-analysis/natural-fiber-composites-market

  6. Safri, S.N.A., Sultan, M.T.H., Jawaid, M., Jayakrishna, K.: Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 133, 112–121 (2018)

    Article  CAS  Google Scholar 

  7. Giridharan, R.: Preparation and property evaluation of Glass/Ramie fibers reinforced epoxy hybrid composites. Compos. Part B Eng. 167, 342–345 (2019)

    Article  CAS  Google Scholar 

  8. Wang, A., Wang, X., Xian, G.: The influence of stacking sequence on the low-velocity impact response and damping behavior of carbon and flax fabric reinforced hybrid composites. Polym. Test. 104, (2021)

  9. Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F.: Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 87, 963–979 (2012)

    Article  CAS  Google Scholar 

  10. Thakur, V.K., Thakur, M.K.: Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 109, 102–117 (2014)

    Article  PubMed  CAS  Google Scholar 

  11. Pillin, I., Kervoelen, A., Bourmaud, A., Goimard, J., Montrelay, N., Baley, C.: Could oleaginous flax fibers be used as reinforcement for polymers? Ind. Crops Prod. 34, 1556–1563 (2011)

    Article  CAS  Google Scholar 

  12. John, M., Thomas, S.: Biofibres and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)

    Article  CAS  Google Scholar 

  13. Bourmaud, A., Morvan, C., Bouali, A., Placet, V., Perré, P., Baley, C.: Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind. Crops Prod. 44, 343–351 (2013)

    Article  CAS  Google Scholar 

  14. Le Duigou, A., Bourmaud, A., Baley, C.: In-situ evaluation of flax fibre degradation during water ageing. Ind. Crops Prod. 70, 204–210 (2015)

    Article  Google Scholar 

  15. Scida, D., Assarar, M., Poilâne, C., Ayad, R.: Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Compos. Part B Eng. 48, 51–58 (2013)

    Article  CAS  Google Scholar 

  16. Cheng, M., Zhong, Y., Kureemun, U., Cao, D., Hu, H., Lee, H.P., Li, S.: Environmental durability of carbon/flax fiber hybrid composites. Compos. Struct. 234, (2020)

  17. Naveen, J., Jawaid, M., Zainudin, E.S., Sultan, M.T.H., Yahaya, R.: Mechanical and moisture diffusion behaviour of hybrid Kevlar/Cocos nucifera sheath reinforced epoxy composites. J. Mater. Res. Technol. 8, 1308–1318 (2019)

    Article  CAS  Google Scholar 

  18. Ridzuan, M.J.M., Abdul Majid, M.S., Khasri, A., Basaruddin, K.S., Gibson, A.G.: Effect of moisture exposure and elevated temperatures on impact response of Pennisetum purpureum/glass-reinforced epoxy (PGRE) hybrid composites. Compos. Part B Eng. 160, 84–93 (2019)

    Article  CAS  Google Scholar 

  19. Firdosh, S., Narasimha Murthy, H.N., Pal, R., Angadi, G., Raghavendra, N., Krishna, M.: Durability of GFRP nanocomposites subjected to hygrothermal ageing. Compos. Part B Eng. 69, 443–451 (2015)

    Article  CAS  Google Scholar 

  20. Rivera, J., Karbhari, V.M.: Cold-temperature and simultaneous aqueous environment related degradation of carbon/vinylester composites. Compos. Part B Eng. 33, 17–24 (2002)

    Article  Google Scholar 

  21. Mayandi, K., Rajini, N., Ayrilmis, N., Devi, M.I., Siengchin, S., Mohammad, F., Al-Lohedan, H.A.: An overview of endurance and ageing performance under various environmental conditions of hybrid polymer composites. J. Mater. Res. Technol. 9(6), 15962–15988 (2020)

    Article  CAS  Google Scholar 

  22. ASTM D5229/D5229M-14: Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. ASTM International, West Conshohocken, PA (2014)

    Google Scholar 

  23. ASTM D3039/D3039M-14: Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA (2014)

    Google Scholar 

  24. ASTM D7264/D7264M-15: Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA (2015)

    Google Scholar 

  25. ASTM D7136/D7136M-15: Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International, West Conshohocken, PA (2015)

    Google Scholar 

  26. Beg, MDh., Pickering, K.L.: Reprocessing of wood fibre reinforced polypropylene composites. Part II: Hygrothermal ageing and its effects. Compos. Part A Appl. Sci. Manuf. 39, 1565–71 (2008)

    Article  Google Scholar 

  27. Espert, A., Vilaplana, F., Karlsson, S.: Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. A Appl. Sci. Manuf. 35, 1267–1276 (2004)

    Article  Google Scholar 

  28. Ventura, H., Claramunt, J., Rodrguez-Pérez, M.N., Ardanuy, M.: Effects of hydrothermal aging on the water uptake and tensile properties of PHB/flax fabric biocomposites. Polym. Degrad. Stab. 142, 129–38 (2017)

    Article  CAS  Google Scholar 

  29. Karimi, M.: Diffusion in polymer solids and solutions. Mass Transf. Chem. Eng. Process. (2011)

  30. Tao, Y., Sun, F., Lu, M.Y., Li, Y.: Water absorption and hygrothermal aging behavior of short ramie fiber-reinforced poly(lactic acid) composites. Polym. Compos. 39, 1098–1104 (2018)

    Article  Google Scholar 

  31. Zhao, X., Li, W., Ouyang, Y., Xu, W., Liu, Y.: Hygrothermal aging behavior and mechanical degradation of ramie/carbon fiber reinforced thermoplastic polymer hybrid composites. Ind. Crops Prod. 193, 116212 (2023)

    Article  CAS  Google Scholar 

  32. Alix, S., Philippe, E., Bessadok, A., Lebrun, L., Morvan, C., Marais, S.: Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresour. Technol. 100, 4742–4749 (2009)

    Article  PubMed  CAS  Google Scholar 

  33. Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W.: A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, 424–442 (2013)

    Article  CAS  Google Scholar 

  34. Cai M, Zhang X, Sun B, Takagi H, Waterhouse GIN, Li Y.: Durable mechanical properties of unidirectional flax fiber/phenolic composites under hydrothermal aging. Compos. Sci. Technol. 220, (2022)

  35. Arbelaiz, A., Fernández, B., Ramos, J.A., Retegi, A., Llano-Ponte, R., Mondragon, I.: Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos. Sci. Technol. 65, 1582–1592 (2005)

    Article  CAS  Google Scholar 

  36. Sreekala, M.S., Thomas, S.: Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos. Sci. Technol. 63, 861–869 (2003)

    Article  CAS  Google Scholar 

  37. Živković, I., Fragassa, C., Pavlović, A., Brugo, T.: Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos. B Eng. 111, 148–164 (2017)

    Article  Google Scholar 

  38. Li, Y., Xue, B.: Hydrothermal ageing mechanisms of unidirectional flax fabric reinforced epoxy composites. Polym. Degrad. Stab. 126, 144–158 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Key Laboratory of High Performance fibers & products, Ministry of Education, Donghua University, Shanghai, P. R. China 201620. And GINW acknowledges funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnology.

Author information

Authors and Affiliations

Authors

Contributions

Ming Cai: Conceptualization, Supervision, Investigation, Validation, Data Curation, Writing-Review & Editing. Jiwei Liu :Software, Visualization, Writing-Review & Editing. Xian Zhang:Experimentation, Writing-Original Draft. Dazhong Wang : Writing-Review & Editing. Qihua Ma: Visualization.Geoffrey I.N.Waterhouse: Writing Review & Editing. Baozhong Sun: Supervision, Writing-Review & Editing.

Corresponding author

Correspondence to Ming Cai.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, M., Liu, J., Zhang, X. et al. Mechanical Stability of Carbon/Ramie Fiber Hybrid Composites Under Hygrothermal Aging. Appl Compos Mater (2024). https://doi.org/10.1007/s10443-024-10211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10443-024-10211-6

Keywords

Navigation