Skip to main content
Log in

Micro-milling Operation of UHMWPE Composites with PTFE and Aramid Reinforcements

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Compression molded polymer composites are generally produced with small dimensions for advanced engineering applications such as microelectronics. Among a broad range of polymers, ultra-high molecular weight polyethylene (UHMWPE) rises as an excellent matrix material due to its high impact absorbing, advanced wear resistive, low friction, self-lubricating, anti-corrosion and eco-friendly properties. Although UHMWPE based composites have been widely investigated in terms of tribology, impact behavior and mechanical properties, there is a big gap in literature regarding the micro-machinability of these advanced composites. In this work, polytetrafluoroethylene (PTFE) and aramid reinforced UHMWPE composites were produced in a compression molding chamber and these specimens were subjected to micro-milling operations by using a flat micro end cutter at three different spindle speeds. Micro-machining characteristics were evaluated in terms of surface roughness and cutting temperature. From the results, surface quality is heavily affected by spindle speed, which changes the material removal mechanism from tearing to shearing at higher rates. Molding pressure is also determinant on surface roughness by means of microstructural consolidation. Regarding the filler materials, it is possible to state that there are two different roughening mechanisms after milling. In the PTFE filled composites, machined surfaces include pitting topographies due to the detached particulate PTFE. However, fiber protrusions from the matrix enhance the roughness on the machined surfaces of the aramid reinforced composites. Furthermore, filler inclusions lead to a slight increase in the cutting temperatures during the milling operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ratchev, S., International Federation for Information Processing, Eds.: Precision assembly technologies and systems: 5th IFIP Wg 5.5 International Precision Assembly Seminar, IPAS 2010, Chamonix, France, February 14–17, 2010, proceedings. Berlin: Springer. (2010)

  2. Chern, G.-L., Chuang, Y.: Study on vibration-EDM and mass punching of micro-holes. J. Mater. Process. Technol. 180(1–3), 151–160 (2006). https://doi.org/10.1016/j.jmatprotec.2006.03.238

    Article  Google Scholar 

  3. Qin, Y., et al.: Development of a new machine system for the forming of micro-sheet-products. Int. J. Mater. Form. 1(S1), 475–478 (2008). https://doi.org/10.1007/s12289-008-0098-9

    Article  Google Scholar 

  4. Gara, S., Tsoumarev, O.: Effect of tool geometry on surface roughness in slotting of CFRP. Int. J. Adv. Manuf. Technol. 86(1–4), 451–461 (2016). https://doi.org/10.1007/s00170-015-8185-9

    Article  Google Scholar 

  5. Gara, S., M’hamed, S., Tsoumarev, O.: Temperature measurement and machining damage in slotting of multidirectional CFRP laminate. Mach. Sci. Technol. 22(2), 320–337 (2018) https://doi.org/10.1080/10910344.2017.1365892

  6. Sheikh-Ahmad, J., Twomey, J., Kalla, D., Lodhia, P.: Multiple Regression and Committee Neural Network Force Prediction Models in Milling FRP. Mach. Sci. Technol. 11(3), 391–412 (2007). https://doi.org/10.1080/10910340701554873

    Article  CAS  Google Scholar 

  7. Pecat, O., Rentsch, R., Brinksmeier, E.: Influence of Milling Process Parameters on the Surface Integrity of CFRP. Procedia CIRP 1, 466–470 (2012). https://doi.org/10.1016/j.procir.2012.04.083

    Article  Google Scholar 

  8. Azmi, A.I., Lin, R.J.T., Bhattacharyya, D.: Machinability study of glass fibre-reinforced polymer composites during end milling. Int. J. Adv. Manuf. Technol. 64(1–4), 247–261 (2013). https://doi.org/10.1007/s00170-012-4006-6

    Article  Google Scholar 

  9. Hintze, W., Hartmann, D.: Modeling of Delamination During Milling of Unidirectional CFRP. Procedia CIRP 8, 444–449 (2013). https://doi.org/10.1016/j.procir.2013.06.131

    Article  Google Scholar 

  10. Szallies, K., Siebert, N., Bergmann, J.P.: Low Frequency Oscillated Milling of Carbon Fiber-reinforced Plastics. Procedia CIRP 66, 153–158 (2017). https://doi.org/10.1016/j.procir.2017.03.298

    Article  Google Scholar 

  11. Hocheng, H.: Machining technology for composite materials: principles and practice. Cambridge, UK ; Philadelphia, PA: Woodhead Pub (2012)

  12. Iskandar, Y., Tendolkar, A., Attia, M.H., Hendrick, P., Damir, A., Diakodimitris, C.: Flow visualization and characterization for optimized MQL machining of composites. CIRP Ann. 63(1), 77–80 (2014). https://doi.org/10.1016/j.cirp.2014.03.078

    Article  Google Scholar 

  13. Agrawal, A., Satapathy, A.: Thermal and dielectric behaviour of polypropylene composites reinforced with ceramic fillers. J. Mater. Sci. Mater. Electron. 26(1), 103–112 (2015). https://doi.org/10.1007/s10854-014-2370-8

    Article  CAS  Google Scholar 

  14. Sharma, S., Bijwe, J., Panier, S., Sharma, M.: Abrasive wear performance of SiC-UHMWPE nano-composites – Influence of amount and size. Wear 332–333, 863–871 (2015). https://doi.org/10.1016/j.wear.2015.01.012

    Article  CAS  Google Scholar 

  15. Sharma, S., Bijwe, J., Panier, S.: Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE. Compos. Part B Eng. 99, 312–320 (2016). https://doi.org/10.1016/j.compositesb.2016.06.003

    Article  CAS  Google Scholar 

  16. Gürgen, S.: Low-velocity impact performance of UHMWPE composites consolidated with carbide particles. Arch. Civ. Mech. Eng. 20(2), 38 (2020). https://doi.org/10.1007/s43452-020-00042-0

    Article  Google Scholar 

  17. Senatov, F.S., Baranov, A.A., Muratov, D.S., Gorshenkov, M.V., Kaloshkin, S.D., Tcherdyntsev, V.V.: Microstructure and properties of composite materials based on UHMWPE after mechanical activation. J. Alloys Compd. 615, S573–S577 (2014). https://doi.org/10.1016/j.jallcom.2013.12.175

    Article  CAS  Google Scholar 

  18. Gao, P., Mackley, M.R.: The structure and rheology of molten ultra-high-molecular-mass polyethylene. Polymer 35(24), 5210–5216 (1994). https://doi.org/10.1016/0032-3861(94)90471-5

    Article  CAS  Google Scholar 

  19. Chen, Y., Jiang, C., Cho, C.: An Investigation of the Compressive Behavior of Polymer Electrode Membrane Fuel Cell’s Gas Diffusion Layers under Different Temperatures. Polymers 10(9), 971 (2018). https://doi.org/10.3390/polym10090971

    Article  CAS  Google Scholar 

  20. Chen, D., Chen, X.J., Gyimah, G.K.: Wear residues of aramid fibre formation in friction materials. Tribol. - Mater. Surf. Interfaces 2(3), 146–149 (2008). https://doi.org/10.1179/175158309X408306

    Article  CAS  Google Scholar 

  21. Wang, S., Ge, S.: The mechanical property and tribological behavior of UHMWPE: Effect of molding pressure. Wear 263(7–12), 949–956 (2007). https://doi.org/10.1016/j.wear.2006.12.070

    Article  CAS  Google Scholar 

  22. Panin, S.V., Kornienko, L.A., Alexenko, V.O., Ivanova, L.R., Shilko, S.V.: Influence of Nano- and Microfillers on the Mechanical and Tribotechnical Properties of ‘UHMWPE-PTFE’ Composites. Key Eng. Mater. 712, 161–165 (2016). https://doi.org/10.4028/www.scientific.net/KEM.712.161

    Article  Google Scholar 

  23. Zhao, W., Xu, R., Ren, C., Wang, J., Yan, P.: Ion-Implantation Modification of Surface Flashover Properties in Vacuum of Polytetrafluoroethylene. IEEE Trans. Plasma Sci. 46(10), 3450–3456 (2018). https://doi.org/10.1109/TPS.2018.2819987

    Article  CAS  Google Scholar 

  24. Iacovetta, D.J.: Synthesis of superhydrophobic nanocomposite coatings using electrodeposition. Master Thesis, University of Toronto (2014)

  25. Rowland, H.D., King, W.P.: Micro and Nanomanufacturing via Molding. In BioNanoFluidic MEMS, P. J. Hesketh, Ed. Boston, MA: Springer US 131–151 (2008). https://doi.org/10.1007/978-0-387-46283-7_5

  26. Gürgen, S., Çelik, O.N., Kuşhan, M.C.: Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers. Compos. Part B Eng. 173, 106949 (2019). https://doi.org/10.1016/j.compositesb.2019.106949

    Article  CAS  Google Scholar 

  27. Gürgen, S.: Wear performance of UHMWPE based composites including nano-sized fumed silica. Compos. Part B Eng. 173, 106967 (2019). https://doi.org/10.1016/j.compositesb.2019.106967

    Article  CAS  Google Scholar 

  28. Gürgen, S.: Wear behavior of UHMWPE composites under oxidative effect. Polym. Degrad. Stab. 199, 109912 (2022). https://doi.org/10.1016/j.polymdegradstab.2022.109912

    Article  CAS  Google Scholar 

  29. Gürgen, S., Sert, A., Kuşhan, M.C.: An investigation on wear behavior of UHMWPE /carbide composites at elevated temperatures. J. Appl. Polym. Sci. 138(16), 50245 (2021). https://doi.org/10.1002/app.50245

    Article  CAS  Google Scholar 

  30. Kuram, E.: Micro-machinability of injection molded polyamide 6 polymer and glass-fiber reinforced polyamide 6 composite. Compos. Part B Eng. 88, 85–100 (2016). https://doi.org/10.1016/j.compositesb.2015.11.004

    Article  CAS  Google Scholar 

  31. Campos Rubio, J.C., Panzera, T.H., Scarpa, F.: Machining behaviour of three high-performance engineering plastics. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229(1), 28–37 (2015). https://doi.org/10.1177/0954405414525142

  32. Carr, J.W., Feger, C.: Ultraprecision machining of polymers. Precis. Eng. 15(4), 221–237 (1993). https://doi.org/10.1016/0141-6359(93)90105-J

    Article  Google Scholar 

  33. Wu, J.J., Buckley, C.P., O’Connor, J.J.: Mechanical integrity of compression-moulded ultra-high molecular weight polyethylene: effects of varying process conditions. Biomaterials 23(17), 3773–3783 (2002). https://doi.org/10.1016/S0142-9612(02)00117-5

    Article  CAS  Google Scholar 

  34. Parasnis, N.C., Ramani, K.: Analysis of the effect of pressure on compression moulding of UHMWPE. J. Mater. Sci. - Mater. Med. 9(3), 165–172 (1998). https://doi.org/10.1023/A:1008871720389

    Article  CAS  Google Scholar 

  35. Sivasakthivel, P.S., Sudhakaran, R.: Optimization of machining parameters on temperature rise in end milling of Al 6063 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 67(9–12), 2313–2323 (2013). https://doi.org/10.1007/s00170-012-4652-8

    Article  Google Scholar 

  36. Price, D.M., Jarratt, M.: Thermal conductivity of PTFE and PTFE composites. Thermochim. Acta 392–393, 231–236 (2002). https://doi.org/10.1016/S0040-6031(02)00105-3

    Article  Google Scholar 

  37. He, S., Sun, G., Cheng, X., Dai, H., Chen, X.: Nanoporous SiO 2 grafted aramid fibers with low thermal conductivity. Compos. Sci. Technol. 146, 91–98 (2017). https://doi.org/10.1016/j.compscitech.2017.04.021

    Article  CAS  Google Scholar 

  38. Sofuoğlu, M.A., Gürgen, S.: Optimization of micromachining operation for particle reinforced UHMWPE composites. Arch. Civ. Mech. Eng. 22(3), 138 (2022). https://doi.org/10.1007/s43452-022-00459-9

    Article  Google Scholar 

  39. Gürgen, S., Sofuoğlu, M.A.: Micro-machining of UHMWPE composites reinforced with carbide fillers. Arch. Civ. Mech. Eng. 21(4), 146 (2021). https://doi.org/10.1007/s43452-021-00299-z

    Article  Google Scholar 

  40. Ge, S., et al.: Friction and wear behavior of nitrogen ion implanted UHMWPE against ZrO2 ceramic. Wear 255(7–12), 1069–1075 (2003). https://doi.org/10.1016/S0043-1648(03)00269-2

    Article  CAS  Google Scholar 

  41. Xiong, D., Ge, S.: Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions. Wear 250(1–12), 242–245 (2001). https://doi.org/10.1016/S0043-1648(01)00647-0

    Article  Google Scholar 

  42. Gürgen, S., Kuşhan, M.C.: The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech. Adv. Mater. Struct. 24(16), 1381–1390 (2017). https://doi.org/10.1080/15376494.2016.1231355

    Article  CAS  Google Scholar 

  43. Gürgen, S., Kuşhan, M.C.: The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 64, 296–306 (2017). https://doi.org/10.1016/j.polymertesting.2017.11.003

    Article  CAS  Google Scholar 

  44. Gürgen, S., Kuşhan, M.C.: The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos. Part Appl. Sci. Manuf. 94, 50–60 (2017). https://doi.org/10.1016/j.compositesa.2016.12.019

    Article  CAS  Google Scholar 

  45. Kurtz, S.M.: The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement. Academic Press, Amsterdam; Boston (2004)

    Google Scholar 

  46. Baena, J., Wu, J., Peng, Z.: Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review. Lubricants 3(2), 413–436 (2015). https://doi.org/10.3390/lubricants3020413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Gürgen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhi, M.R., Gürgen, S. Micro-milling Operation of UHMWPE Composites with PTFE and Aramid Reinforcements. Appl Compos Mater 30, 57–72 (2023). https://doi.org/10.1007/s10443-022-10073-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10073-w

Keywords

Navigation