Skip to main content
Log in

Comparison of Fatigue Life Between C/SiC and SiC/SiC Ceramic-Matrix Composites at Room and Elevated Temperatures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S–N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  2. Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R., Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion system applications. Acta Astronaut. 55, 409–420 (2004). doi:10.1016/j.actaastro.2004.05.052

    Article  Google Scholar 

  3. DiCarlo, J.A., Van Roode, M.: Ceramic composite development for gas turbine hot section components. Proc. ASME Turbo Expo Power Land Sea Air 2, 221–231 (2006)

    Google Scholar 

  4. Bertrand, D.J., Sabelkin, V., Zawada, L., Mall, S.: Fatigue behavior of sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment. J. Mater. Sci. 50, 7437–7447 (2015). doi:10.1007/s10853-015-9302-8

    Article  Google Scholar 

  5. Li, L.B.: Fatigue hysteresis behavior of cross-ply C/SiC ceramic matrix composites at room and elevated temperatures. Mater. Sci. Eng. A 586, 160–170 (2013). doi:10.1016/j.msea.2013.08.017

    Article  Google Scholar 

  6. Li, L.B.: Fatigue damage models and life prediction of long-fiber-reinforced ceramic matrix composites. PhD Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, (2010).

  7. Shuler, S.F., Holmes, J.W., Wu, X.: Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite. J. Am. Ceram. Soc. 76, 2327–2336 (1993). doi:10.1111/j.1151-2916.1993.tb07772.x

    Article  Google Scholar 

  8. Lu, M.P., Tong, X.Y., Ren, S.H., Yao, L.J.: Fatigue behavior and life prediction of 2D C/SiC under room temperature. Adv. Aeronaut Sci. Eng. 5, 104–108 (2014) (in Chinese)

    Google Scholar 

  9. Min, J.B., Xue, D., Shi, Y.: Micromechanics modeling for fatigue damage analysis designed for fabric reinforced ceramic matrix composites. Compos. Struct. 111, 213–223 (2014). doi:10.1016/j.compstruct.2013.12.025

    Article  Google Scholar 

  10. Mall, S., Engesser, J.M.: Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Compos. Sci. Technol. 66, 863–874 (2006). doi:10.1016/j.compscitech.2005.06.020

    Article  Google Scholar 

  11. Cheng, Q.Y., Tong, X.Y., Zheng, X., Zhou, J., Yao, L.J., Li, B.: Experimental investigation on the fatigue characteristics about high temperature of plain-woven C/SiC composite. J. Mech. Strength 32, 819–823 (2010) (in Chinese)

    Google Scholar 

  12. Du, S.M., Qiao, S.R., Ji, G.C., Han, D.: Tension-tension fatigue behavior of 3D-C/SiC composite at room temperature and 1300 °C. Mater. Eng. 9, 22–25 (2002) (in Chinese)

    Google Scholar 

  13. Du, S.M., Qiao, S.R.: Tension-tension fatigue behavior of 3D-C/SiC composite at 1500 °C. Mater. Eng. 5, 34–37 (2011) (in Chinese)

    Google Scholar 

  14. Reynaud, P.: Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos. Sci. Technol. 56, 809–814 (1996). doi:10.1016/0266-3538(96)00025-5

    Article  Google Scholar 

  15. Mall, S.: Effects of moisture on fatigue behavior of SiC/SiC composite at elevated temperature. Mater. Sci. Eng. A 412, 165–170 (2005). doi:10.1016/j.msea.2005.08.040

    Article  Google Scholar 

  16. Mizuno, M., Zhu, S.J., Nagano, Y., Sakaida, Y., Kagawa, Y., Watanabe, M.: Cyclic-fatigue behavior of SiC/SiC composites at room and high temperatures. J. Am. Ceram. Soc. 79, 3065–3077 (1996). doi:10.1111/j.1151-2916.1996.tb08078.x

    Article  Google Scholar 

  17. Michael, W.K.: Fatigue behavior of a SiC/SiC composite at 1000 °C in air and steam. AFIT/GAE/ENY/10-D01 (2010).

  18. Jacob, D.: Fatigue behavior of an advanced SiC/SiC composite with an oxidation inhibited matrix at 1200 °C in air and in steam. AFIT/GEA/ENY/10-M07 (2010).

  19. Zhu, S.J., Mizuno, M., Nagano, Y., Cao, J.W., Kagawa, Y., Kaya, H.: Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature. J. Am. Ceram. Soc. 81, 2269–2277 (1998). doi:10.1111/j.1151-2916.1998.tb02621.x

    Article  Google Scholar 

  20. Ruggles-Wrenn, M.B., Sharma, V.: Effects of steam environment on fatigue behavior of two SiC/[SiC+Si3N4] ceramic composites at 1300 °C. Appl. Compos. Mater. 18, 385–396 (2011). doi:10.1007/s10443-010-9163-x

    Article  Google Scholar 

  21. Shi, D.Q., Jing, X., Yang, X.G.: Low cycle fatigue behavior of a 3D braided KD-I fiber reinforced ceramic matrix composite for coated and uncoated specimens at 1100 °C and 1300 °C. Mater. Sci. Eng. A 631, 38–44 (2015). doi:10.1016/j.msea.2015.01.078

    Article  Google Scholar 

  22. Li, L.B.: Fatigue hysteresis of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Appl. Compos. Mater. 23, 1–27 (2016). doi:10.1007/s10443-015-9448-1

    Article  Google Scholar 

  23. Li, L.B.: Modeling fatigue hysteresis behavior of unidirectional C/SiC ceramic-matrix composite. Compos. Part B 66, 466–474 (2014). doi:10.1016/j.compositesb.2014.06.014

    Article  Google Scholar 

  24. Li, L.B.: Fatigue life prediction of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Part I: Experimental analysis. Appl. Compos. Mater. 23, 101–117 (2016). doi:10.1007/s10443-015-9446-3

    Article  Google Scholar 

  25. Li, L.B.: Fatigue life prediction of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Part II: Experimental comparisons. Appl. Compos. Mater. 22, 961–972 (2015). doi:10.1007/s10443-015-9445-4

    Article  Google Scholar 

  26. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites. Acta Mater. 46, 3409–3420 (1998). doi:10.1016/S1359-6454(98)00041-X

    Article  Google Scholar 

  27. Evans, A.G., Zok, F.W., McMeeking, R.M.: Fatigue of ceramic matrix composites. Acta Metall. Mater. 43, 859–875 (1995). doi:10.1016/0956-7151(94)00304-Z

    Article  Google Scholar 

  28. Lee, S.S., Stinchcomb, W.W.: Damage mechanisms of cross-ply Nicalon/CAS-II laminate under cyclic tension. Ceram. Eng. Sci. Proc. 15, 40–48 (1994). doi:10.1002/9780470314500.ch5

    Article  Google Scholar 

  29. Lara-Curzio, E.: Analysis of oxidation-assisted stress-rupture of continuous fiber-reinforced ceramic matrix composites at intermediate temperatures. Compos. Part A 30, 549–554 (1999). doi:10.1016/S1359-835X(98)00148-1

    Article  Google Scholar 

  30. Casas, L., Martinez-Esnaola, J.M.: Modelling the effect of oxidation on the creep behavior of fiber-reinforced ceramic matrix composites. Acta Mater. 51, 3745–3757 (2003). doi:10.1016/S1359-6454(03)00189-7

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the Science and Technology Department of Jiangsu Province for the funding that made this research study possible

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Ethics declarations

Funding

This study has received the support from the Science and Technology Department of Jiangsu Province through the Natural Science Foundation of Jiangsu Province (Grant No. BK20140813), and the Fundamental Research Funds for the Central Universities (Grant No. NS2016070).

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Comparison of Fatigue Life Between C/SiC and SiC/SiC Ceramic-Matrix Composites at Room and Elevated Temperatures. Appl Compos Mater 23, 913–952 (2016). https://doi.org/10.1007/s10443-016-9492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9492-5

Keywords

Navigation