Skip to main content
Log in

Competitive Exclusion and Axiomatic Set-Theory: De Morgan’s Laws, Ecological Virtual Processes, Symmetries and Frozen Diversity

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

This work applies the competitive exclusion principle and the concept of potential competitors as simple axiomatic tools to generalized situations in ecology. These tools enable apparent competition and its dual counterpart to be explicitly evaluated in poorly understood ecological systems. Within this set-theory framework we explore theoretical symmetries and invariances, De Morgan’s laws, frozen evolutionary diversity and virtual processes. In particular, we find that the exclusion principle compromises the geometrical growth of the number of species. By theoretical extending this principle, we can describe interspecific depredation in the dual case. This study also briefly considers the debated situation of intraspecific competition. The ecological consequences of our findings are discussed; particularly, the use of our framework to reinterpret coupled mathematical differential equations describing certain ecological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford JG (2015) A reaction–diffusion model of the darien gap sterile insect release method. Commun Nonlinear Sci Numer Simul 22:175–185

    Article  Google Scholar 

  • Armstrong RA, McGehee R (1980) Competitive exclusion. Am Nat 115:151–170

    Article  Google Scholar 

  • Benítez M, Miramontes O, Valiente-Banuet A (2014) Frontiers in ecology, evolution and complexity. EditoraC3 CopIt-arXives Publishing Open Access, Mexico

    Google Scholar 

  • Begon M, Harper JL, Twonsend CR (1996) Ecology, 3rd edn. Blackwell, UK

    Google Scholar 

  • Bengtsson J, Fagerström T, Rydin H (1994) Competition and coexistence in plant communities. Trends Ecol Evolut 9:246–250

    Article  Google Scholar 

  • Birand A, Barany E (2014) Evolutionary dynamics through multispecies competition. Theor Ecol. doi:10.1007/s12080-014-0224-x

    Google Scholar 

  • Boccara N (2010) Modeling complex systems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723

    Article  Google Scholar 

  • Costantino RF, Cushing JM, Dennis B, Desharnais RA (1995) Experimentally induced transitions in the dynamic behavior of insect populations. Nature 375:227–230

    Article  Google Scholar 

  • Emmel TC (1973) Ecology and population biology. W. W. Norton and Company. Inc, New York

    Google Scholar 

  • Flores JC (1998) A mathematical model for Neanderthal extinction. J Theor Biol 191:295–298

    Article  Google Scholar 

  • Flores JC (2011) Diffusion coefficient of modern humans out-competing Neanderthals. J Theor Biol 280:189–190

    Article  Google Scholar 

  • Flores JC (2014) Modelling Late Pleistocene megafaunal extinction and critical cases: a simple prey–predator perspective. Ecol Model 291:218–223

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Gertsev VI, Gertseva VV (2004) Classification of mathematical models in ecology. Ecol Model 178:329–334

    Article  Google Scholar 

  • Hastings A (1997) Population biology. Springer, Berlin

    Book  Google Scholar 

  • Hastings A (2008) Editorial: an ecological theory journal at last. Theor Ecol 1:1–4

    Article  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  Google Scholar 

  • Holland JN, Wang Y, Sun S, DeAngelis DL (2013) Consumer–resource dynamics of indirect interactions in a mutualism–parasitism food web module. Theor Ecol 6:475–493

    Article  Google Scholar 

  • Holt RD (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am Nat 124:377–406

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jeffries MJ, Lawton JH (1985) Predator–prey ratios in communities of freshwater invertebrates: the role of enemy free space. Freshw Biol 15:105–212

    Article  Google Scholar 

  • Kingsland SE (1995) Modeling nature: episodes in the history of population ecology, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Levin SA (1970) Community equilibria and stability, and an extension of the competitive exclusion principle. Am Nat 104:413–423

    Article  Google Scholar 

  • Leslie PH (1948) Some further notes on the use of matrices in population mathematics. Biometrika 35:213–245

    Article  Google Scholar 

  • Malé P-JG et al (2014) Retaliation in response to castration promotes a low level of virulence in an ant–plant mutualism. Evolut Biol 41:22–28

    Google Scholar 

  • Maynard Smith J (1962) Disruptive selection, polymorphism and sympatric speciation. Nature 195:60–62

    Article  Google Scholar 

  • Méndez V, Fedotov S, Horsthemke W (2010) Reaction–transport system: mesoscopic foundations, fronts, and spatial instabilities. Springer, Berlin

    Book  Google Scholar 

  • Méndez V, Campos D, Bartumeus F (2014) Stochastic foundation in movement ecology. Springer, Berlin

    Book  Google Scholar 

  • Metzger C, Ursenbacher S, Christe P (2009) Testing the competitive exclusion principle using various niche parameters in a native (Natix maura) and an introduced (N. tessellata) colubrid. Amphib Reptil 30:523–531

    Article  Google Scholar 

  • Milne BT (1992) Spatial aggregation and neutral models in fractal landscapes. Am Nat 139:32–57

    Article  Google Scholar 

  • Murray JD (2002) Mathematical biology (V. 1), 3rd edn. Springer, Berlin

    Google Scholar 

  • Murray JD (2003) Mathematical biology (V. 2), 3rd edn. Springer, Berlin

    Google Scholar 

  • Odum EP (1971) Fundamentals of ecology, 3rd edn. W. B. Saunders, Philadelphia

    Google Scholar 

  • Park T (1954) Experimental studies of interspecies competition II. Physyol Zool 27:177–238

    Article  Google Scholar 

  • Passarge J et al (2006) Competition for nutrients an light: stable coexistence, alternative stable states or competitive exclusion? Ecol Monogr 76:57–72

    Article  Google Scholar 

  • Reece JB et al (2011) Campbell biology, 9th edn. Pearson Benjamin Cumming Press, San Francisco

    Google Scholar 

  • Resetarits WJ (1995) Competitive asymmetry and coexistence in size-structured populations of brook trout and spring salamanders. Oikos 73:188–198

    Article  Google Scholar 

  • Saloniemi I (1993) An environmental explanation for the character displacement pattern in Hydrobia snails. Oikos 67:75–80

    Article  Google Scholar 

  • Tilman D (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58:338–348

    Article  Google Scholar 

  • Villee CA (1985) Biology, 2 Revised edition edn. Saunder College Press, Philadelphia

    Google Scholar 

  • Zaret TM, Rand S (1971) Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52:336–342

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Project FONDECYT 1120344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Flores.

Appendices

Appendix 1: Resume for Symbols

  • (A1) \(\supset\) Perturbation.

  • (A2) > Depredation.

  • (A3) \(\oplus\) Two independent species (independent processes).

  • (A4) \(\otimes\) Two interdependent species (interdependent processes).

  • (A5) \(\Rightarrow\) Temporal evolution.

  • (A6) \(\Leftrightarrow\) Equivalence.

  • (A7) \(\supset \subset\) Abbreviation for competition.

  • (A8) \(> <\) Mutual depredation.

  • (A9) or Exclusion (some times \(\vee\)).

  • (A10) \(\sum\) Independent species: \(A\oplus B\oplus C\oplus D\oplus \cdots\).

Appendix 2: Resume for Some Basic Processes and Definitions

  • (B1) Exclusion:\(\ \left\{ {\mathcal{N}}>\left( A\supset \subset B\right) \right\}\) \(\Rightarrow \left\{ \left( {\mathcal{N}}>A\right)\;{\text{or}}\;\left( {\mathcal{N}}>B\right) \right\}\).

  • (B2) Potential competitors: \(\left\{ {\mathcal{S}}>\left( A\oplus B\right) \right\} \Rightarrow \left\{ {\mathcal{S}}>\left( A\supset \subset B\right) \right\}\).

  • (B3) High intraspecific competition: \({\mathcal{N}}>(I\supset \subset I)\Rightarrow \left( {\mathcal{N}}>I\right)\) or \(\left( {\mathcal{N}}>\phi \right)\).

  • (B4) Dual process (D): \(\left( >\right) \leftrightarrow \left( \supset \right)\).

  • (B5) Inverse process (I): \(\left( >\right) \leftrightarrow \left( <\right)\) and \(\left( \supset \right) \leftrightarrow \left( \subset \right)\).

  • (B6) First De Morgan’s law: \((A\oplus B)^{c}\Leftrightarrow \left( A^{c}\otimes B^{c}\right)\).

  • (B7) A “sterile” species (M): \(\left( {\mathcal{N}}>M\right) \Rightarrow \left( {\mathcal{N}}>\phi \right)\) then, from B1,

  • (B8) competion with sterile: \(\left\{ {\mathcal{N}}>\left( A\supset \subset M\right) \right\}\) \(\Rightarrow \left\{ \left( {\mathcal{N}}>A\right)\; {\text{or}}\;\left( {\mathcal{N}}>\phi \right) \right\}\).

Point B1 corresponds to an axiom or premise. B2 and B3 correspond to definitions involving basic (operative) processes. Development of Sects. 5 and 6, also 8, are based on these mentioned points. Point B4–B5 are definitions related to virtual process. B6 is a consequence showed in Sect. 7 and related sections. Note that definitions B7 and B8, being tangential in this appendix, are motivated from Sterile Insect Technique (Alford 2015) to eradicate, for instance, fruit flies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, J.C. Competitive Exclusion and Axiomatic Set-Theory: De Morgan’s Laws, Ecological Virtual Processes, Symmetries and Frozen Diversity. Acta Biotheor 64, 85–98 (2016). https://doi.org/10.1007/s10441-016-9275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9275-2

Keywords

Navigation