Skip to main content
Log in

A BGK Model for Gas Mixtures

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The aim of this article is to construct a BGK operator for gas mixtures starting from the true Navier-Stokes equations. That is the ones having transport coefficients given by the hydrodynamical limit of the Boltzmann equation(s). Here the same hydrodynamical limit is obtained by introducing relaxation coefficients on certain moments of the distribution functions. Next the whole model is set by using entropy minimization under moments constraints. In our case the BGK operator allows to recover the exact Fick and Newton laws and satisfy the fundamental properties of the Boltzmann equations for inert gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andries, P., LeTallec, P., Perlat, J.P., Perthame, B.: Entropy condition for the ES BGK model of Boltzmann equation for mono and polyatomic gases. Eur. J. Mech. B, Fluids 19, 813–830 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aoki, K., Bardos, C., Takata, S.: Knudsen layer for a gas mixture. J. Stat. Phys. 112(3/4), 629–655 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511–524 (1954)

    Article  MATH  Google Scholar 

  4. Bisi, M., Groppi, M., Spiga, G.: Kinetic approach to chemically reacting gas mixtures. In: Modelling and Numerics of Kinetic Dissipative Systems. Nova Publ., Hauppauge (2006)

    Google Scholar 

  5. Bisi, M., Spiga, G.: On a kinetic BGK model for slow chemical reactions. Kinet. Relat. Models 4(1) (2011)

  6. Bourgat, J.F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases and Boltzmann’s theorem. Eur. J. Mech. B, Fluids 13(2), 237–254 (1994)

    MATH  Google Scholar 

  7. Brull, S.: An Ellipsoidal Statistical Model for gas mixtures. Commun. Math. Sci. (to appear)

  8. Brull, S.: Un modèle ES-BGK pour des mélanges de gaz. C. R. Math. Acad. Sci. Paris 351(19–20), 775–779 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brull, S., Schneider, J.: A new approach of the ellipsoidal statistical model. Contin. Mech. Thermodyn. 20(2), 63–74 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brull, S., Schneider, J.: On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 20(8), 489–508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brull, S., Schneider, J.: Derivation of a BGK model for reacting gas mixtures. Commun. Math. Sci. 12(7), 1199–1223 (2014)

    Article  MathSciNet  Google Scholar 

  12. Brull, S., Pavan, V., Schneider, J.: Derivation of BGK models for mixtures. Eur. J. Mech. B, Fluids 33, 74–86 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B, Fluids 24, 219–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    Google Scholar 

  15. Garzo, V., Santos, A., Brey, J.J.: A kinetic model for a multicomponent gas. Phys. Fluids 1(2), 380–383 (1989)

    Article  MATH  Google Scholar 

  16. Giovangigli, V.: Multicomponent Flow Modeling. Birkhauser, Boston (1998)

    Google Scholar 

  17. Groppi, M., Rjasanow, S., Spiga, G.: A kinetic relaxation approach to fast reactive mixtures: shock wave structure. J. Stat. Mech. Theory Exp. (2009). doi:10.1088/1742-5468/2009/10/P10010

    MATH  Google Scholar 

  18. Hamel, B.B.: Kinetic model for binary gas mixtures. Phys. Fluids 8(3), 418–425 (1965)

    Article  MathSciNet  Google Scholar 

  19. Hamel, B.B.: Two-fluid hydrodynamic equations for a neutral, disparate-mass, binary mixture. Phys. Fluids 9(12), 11–22 (1966)

    MathSciNet  Google Scholar 

  20. Holway, L.H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)

    Article  Google Scholar 

  21. Junk, M.: Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10(7), 1001–1025 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kosuge, S.: Model Boltzmann equation for gas mixtures: construction and numerical comparison. Eur. J. Mech. B, Fluids 28, 170–184 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Levermore, D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Morse, T.F.: Kinetic model equations for a gas mixture. Phys. Fluids 7(12), 2012–2013 (1964)

    Article  MathSciNet  Google Scholar 

  25. Schneider, J.: Entropic approximation in kinetic theory. M2AN 38(3), 541–561 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Brull.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brull, S., Schneider, J. & Pavan, V. A BGK Model for Gas Mixtures. Acta Appl Math 132, 117–125 (2014). https://doi.org/10.1007/s10440-014-9893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9893-0

Keywords

Navigation