Skip to main content

A Review on a General Multi-Species BGK Model: Modelling, Theory and Numerics

  • Conference paper
  • First Online:
From Kinetic Theory to Turbulence Modeling (INdAM 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 51))

  • 295 Accesses

Abstract

In this article we focus on kinetic equations for gas mixtures since in applications one often has to deal with mixtures instead of a single gas. In particular, we consider an approximation of the Boltzmann equation, the Bhatnagar–Gross–Krook (BGK) equation. This equation is used in many applications because it is very efficient in numerical simulations. In this article, we recall a general BGK equation for gas mixtures which has free parameters. Specific choices of these free parameters lead to special cases in the literature. For this model, we provide an overview concerning modelling, theoretical results and numerics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achleitner, F., Arnold, A., Carlen, E.A.: On linear hypocoercive BGK models. In From Particle Systems to Partial Differential Equations III, Springer Proceedings in Mathematics & Statistics, vol. 162 [Cham], pp. 1–37. (2016)

    Google Scholar 

  2. Alaia, A., Puppo, G.: A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models. J. Comput. Phys. 231(16), 5217–5242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andries, P., Aoki, K., Perthame, B.: A consistent BGK-type model for gas mixtures. J. Statist. Phys. 106, 993–1018 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asinari, P.: Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling. Comput. Math. Appl. 55, 1392–1407 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Ayuso, B., Carrillo, J.A., Shu, C.-W.: Discontinuous Galerkin Methods for the one-dimensional Vlasov-Poisson system, Kinetic Related Models 4, 955–989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bae, G., Klingenberg, C., Yun, S., Pirner, M.: Mixture BGK model near a global Maxwellian, manuscript (2021)

    Google Scholar 

  7. Bennoune, M., Lemou, M., Mieussens, L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comput. Phys. 227, 3781–3803 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernard, F., Iollo, A., Puppo, G.: A local velocity grid approach for BGK equation. Commun. Comput. Phys. 16(4), 956–982 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernard, F., Iollo, A., Puppo, G.: Accurate asymptotic preserving boundary conditions for kinetic equations on Cartesian grids. J. Sci. Comput. 65, 735–766 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    MATH  Google Scholar 

  11. Bobylev, A.V., Bisi, M., Groppi, M., Spiga, G., Potapenko, I.F.: A general consistent BGK model for gas mixtures. Kinetic Related Models 11(6), 1377 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boscarino, S., Cho, S.Y., Groppi, M., Russo, G.: BGK models for inert mixtures: comparison and applications (2021). Preprint arXiv:2102.12757 [math-ph]

    Google Scholar 

  13. Boscarino, S., Cho, S.Y., Russo, G.: A local velocity grid conservative semi-Lagrangian schemes for BGK model (2021). Preprint arXiv:2107.08626 [math.NA]

    Google Scholar 

  14. Boscarino, S., Cho, S.Y., Russo, G., Yun, S.B.: Conservative semi-Lagrangian schemes for kinetic equations Part II: applications. J. Comput. Phys. 436, 110281 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boscarino, S., Cho, S.Y., Groppi, M., Russo, G.: BGK models for inert mixtures: comparison and applications. Preprint arXiv:2102.12757

    Google Scholar 

  16. Brull, S.: An ellipsoidal statistical model for gas mixtures. Commun. Math. Sci. 8, 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brull, S., Mieussens, L.: Local discrete velocity grids for deterministic rarefied flow simulations. J. Comput. Phys. 266, 22–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brull, S., Pavan, V., Schneider, J.: Derivation of a BGK model for mixtures. Euro. J. Mech. B/Fluids 33, 74–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  20. Cercignani, C.: Rarefied Gas Dynamics, From Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Cheng, Y., Gamba, I.M., Proft, J.: Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations. Math. Comput. 81(277), 153–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chu, C.K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8(12), 12–22 (1965)

    Article  Google Scholar 

  23. Coron, F., Perthame, B.: Numerical Passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28(1), 26–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Crestetto, A., Crouseilles, N., Lemou, M.: Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic Related Models 5, 787–816 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Crestetto, A., Klingenberg, C., Pirner, M.: Kinetic/fluid micro-macro numerical scheme for a two component gas mixture. SIAM Multiscale Modeling Simulation 18(2), 970–998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927–1953 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Degond, P., Dimarco, G., Pareschi, L.: The Moment Guided Monte Carlo method. Int. J. Numer. Methods Fluids 67, 189–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dimarco, G., Loubère, R.: Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation. J. Comput. Phys. 255, 680–698 (2012)

    MATH  Google Scholar 

  29. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numerica 23, 369–520 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dimarco, G., Pareschi, L.: Implicit-Explicit linear multistep methods for stiff kinetic equations. SIAM J. Numer. Anal. 55(2), 664–690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 20, 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gamba, I.M., Tharkabhushaman, S.H.: Spectral-Lagrangian based methods applied to computation of non-equilibrium statistical states. J. Comput. Phys. 228, 2012–2036 (2009)

    Article  MathSciNet  Google Scholar 

  34. Garzó, V., Santos, A., Brey, J.J.: A kinetic model for a multicomponent gas. Phys. Fluids A 1(2), 380–383 (1989)

    Article  MATH  Google Scholar 

  35. Greene, J.: Improved Bhatnagar-Gross-Krook model of electron-ion collisions. Phys. Fluids 16, 2022–2023 (1973)

    Article  Google Scholar 

  36. Groppi, M., Monica, S., Spiga, G.: A kinetic ellipsoidal BGK model for a binary gas mixture. Europhys. Lett. 96, 64002 (2011)

    Article  Google Scholar 

  37. Gross, E.P., Krook, M.: Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems. Phys. Rev. 102(3), 593 (1956)

    Article  MATH  Google Scholar 

  38. Haack, J.R., Hauck, C.D., Murillo, M.S.: A conservative, entropic multispecies BGK model. J. Statist. Phys. 168, 826–856 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Haack, J.R., Hauck, C.D., Murillo, M.S.: Interfacial mixing in high-energy-density matter with a multiphysics kinetic model. Phys. Rev. E 96, 063310 (2017)

    Article  Google Scholar 

  40. Haack, J., Hauck, C., Klingenberg, C., Pirner, M., Warnecke, S.: A consistent BGK model with velocity-dependent collision frequency for gas mixtures. J. Statist. Phys. 184(31), 1–17 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Haack, J., Hauck, C., Klingenberg, C., Pirner, M., Warnecke, S.: Numerical schemes for a multi-species BGK model with velocity-dependent collision frequency. J. Comput. Phys. 473, 111729 (2023). https://doi.org/10.1016/j.jcp.2022.111729

    Article  MathSciNet  MATH  Google Scholar 

  42. Hamel, B.B.: Kinetic model for binary gas mixtures. Phys. Fluids 8, 418–425 (1956)

    Article  Google Scholar 

  43. Hittinger, J., Banks, J.: Block-structured adaptive mesh refinement algorithms for Vlasov simulation. J. Comput. Phys. 241, 118–140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Holway, L.H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)

    Article  Google Scholar 

  45. Hu, J., Jin, S., Li, Q.: Asymptotic-preserving schemes for multiscale Hyperbolic and Kinetic equations. Handbook of Numer. Analy. 18, 103–129 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Jin, S.: Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122, 51–67 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jin, S., Li, Q.: A BGK-penalization based asymptotic-preserving scheme for the multispecies Boltzmann equation. Numer. Methods Partial Differ. Eq. 29(3), 1056–1080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jin, S., Pareschi, L.: Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes. J. Comput. Phys. 161, 312–330 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Klingenberg, C., Pirner, M.: Existence, uniqueness and positivity of solutions for BGK models for mixtures. J. Differ. Equ. 264, 702–727 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Klingenberg, C., Pirner, M., Puppo, G.: A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic Related Models 10, 445–465 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu, L., Pirner, M.: Hypocoercivity for a BGK model for gas mixtures. J. Differ. Equ. 267, 119–149 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10(08), 1121–1149 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mieussens, L., Struchtrup, H.: Numerical comparison of Bhatnagar–Gross–Krook models with proper Prandtl number. Phys. Fluids 16, 2797 (2004)

    Article  MATH  Google Scholar 

  54. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comp. 75, 1833–1852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Munafo, A., Torres, E., Haack, J., Gamba, I.M., Magin, T.: A spectral-lagrangian Boltzmann solver for a multi-energy level gas. J. Comput. Phys. 264, 152–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Pareschi, L., Russo, G.: Implicit-explicit schemes Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129–155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Perthame, B., Pulvirenti, M.: Weighted L bounds and uniqueness for the Boltzmann BGK model. Arch. Rational Mech. Anal. 125, 289–295 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pieraccini, S., Puppo, G.: Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput. 32, 1–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Puppo, G.: Kinetic models of BGK type and their numerical integration. Riv. Mat. Univ. Parma 10(2), 299–349 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov–Poisson system, J. Comput. Phys. 230(23), 8386–8409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Shakhov, E.M.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3, 95–96 (1968)

    Article  MathSciNet  Google Scholar 

  62. Sofonea, V., Sekerka, R.: BGK models for diffusion in isothermal binary fluid systems. Physica 3, 494–520 (2001)

    Article  MATH  Google Scholar 

  63. Sonndendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of Vlasov equations. J. Comput. Phys. 149(201), 201–220 (1998)

    MathSciNet  Google Scholar 

  64. Struchtrup, H.: The BGK-model with velocity-dependent collision frequency. Continuum Mech. Thermodyn. 9(1), 23–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  65. Todorova, B., Steijl, R.: Derivation and numerical comparison of Shakov and Ellipsoidal Statistical kinetic models for a monoatomic gas mixture. Euro. J. Mech.-B/Fluids 76, 390-402 (2019)

    Article  MATH  Google Scholar 

  66. Yun, S.-B.: Classical solutions for the ellipsoidal BGK model with fixed collision frequency. J. Differ. Equ. 259, 6009–6037 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Marlies Pirner is supported by the Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlies Pirner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pirner, M., Warnecke, S. (2023). A Review on a General Multi-Species BGK Model: Modelling, Theory and Numerics. In: Barbante, P., Belgiorno, F.D., Lorenzani, S., Valdettaro, L. (eds) From Kinetic Theory to Turbulence Modeling. INdAM 2021. Springer INdAM Series, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-19-6462-6_17

Download citation

Publish with us

Policies and ethics