Skip to main content

Advertisement

Log in

Low-Intensity Pulsed Ultrasound: A Physical Stimulus with Immunomodulatory and Anti-inflammatory Potential

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ultrasound has expanded into the therapeutic field as a medical imaging and diagnostic technique. Low-intensity pulsed ultrasound (LIPUS) is a kind of therapeutic ultrasound that plays a vital role in promoting fracture healing, wound repair, immunomodulation, and reducing inflammation. Its anti-inflammatory effects are manifested by decreased pro-inflammatory cytokines and chemokines, accelerated regression of immune cell invasion, and accelerated damage repair. Although the anti-inflammatory mechanism of LIPUS is not very clear, many in vitro and in vivo studies have shown that LIPUS may play its anti-inflammatory role by activating signaling pathways such as integrin/Focal adhesion kinase (FAK)/Phosphatidylinositol 3-kinase (PI3K)/Serine threonine kinase (Akt), Vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS), or inhibiting signaling pathways such as Toll-like receptors (TLRs)/Nuclear factor kappa-B (NF-κB) and p38-Mitogen-activated protein kinase (MAPK). As a non-invasive physical therapy, the anti-inflammatory and immunomodulatory effects of LIPUS deserve further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Reference

  1. Hp, M. Dampening inflammation. Nature Immunology. 6(12):1179–1181, 2005.

    Article  Google Scholar 

  2. Germolec, D. R., K. A. Shipkowski, R. P. Frawley, et al. Markers of inflammation. Methods Mol Biol. 2018:57–79, 1803.

    Google Scholar 

  3. Medzhitov, R. Origin and physiological roles of inflammation. Nature. 454(7203):428–435, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. Gao, S., G. D. Lewis, M. Ashokkumar, et al. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason Sonochem. 21(1):446–53, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Erriu, M., C. Blus, S. Szmukler-Moncler, et al. Microbial biofilm modulation by ultrasound: current concepts and controversies. Ultrason Sonochem. 21(1):15–22, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. Miller, D. L., N. B. Smith, M. R. Bailey, et al. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31(4):623–634, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang, X., O. Savchenko, Y. Li, et al. A review of low-intensity pulsed ultrasound for therapeutic applications. IEEE Trans Biomed Eng. 66(10):2704–2718, 2019.

    Article  PubMed  Google Scholar 

  8. Qin, H., L. Du, Z. Luo, et al. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: focusing on the molecular mechanism. Front Bioeng Biotechnol. 10:1080430, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lai, W. C., B. C. Iglesias, B. J. Mark, et al. Low-intensity pulsed ultrasound augments tendon, ligament, and bone-soft tissue healing in preclinical animal models: a systematic review. Arthroscopy. 37(7):2318-2333.e3, 2021.

    Article  PubMed  Google Scholar 

  10. Beccaria, K., M. Canney, G. Bouchoux, et al. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: a review and perspectives. Neurosurg Focus. 48(1):E10, 2020.

    Article  PubMed  Google Scholar 

  11. Beccaria, K., A. Sabbagh, J. de Groot, et al. Blood-brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. J Neurooncol. 151(1):65–73, 2021.

    Article  PubMed  Google Scholar 

  12. Rubin, C., M. Bolander, J. P. Ryaby, et al. The use of low-intensity ultrasound to accelerate the healing of fractures. The Journal of Bone and Joint Surgery. American Volume. 83(2):259–270, 2001.

    CAS  PubMed  Google Scholar 

  13. Li, X., Y. Zhong, L. Zhang, et al. Recent advances in the molecular mechanisms of low-intensity pulsed ultrasound against inflammation. Journal of Molecular Medicine. 101(4):361–374, 2023.

    Article  CAS  PubMed  Google Scholar 

  14. Zindel, J., and P. Kubes. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol. 15:493–518, 2020.

    Article  CAS  PubMed  Google Scholar 

  15. Signori, L. U., STd. Costa, A. F. S. Neto, et al. Haematological effect of pulsed ultrasound in acute muscular inflammation in rats. Physiotherapy. 97(2):163–9, 2011.

    Article  PubMed  Google Scholar 

  16. Junior, EMd. S., R. A. Mesquita-Ferrari, C. M. França, et al. Modulating effect of low intensity pulsed ultrasound on the phenotype of inflammatory cells. Biomed Pharmacother. 96:1147–1153, 2017.

    Article  Google Scholar 

  17. Nakamura, T., S. Fujihara, K. Yamamoto-Nagata, et al. Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann Biomed Eng. 39(12):2964–2971, 2011.

    Article  PubMed  Google Scholar 

  18. Chung, J.-I., S. Barua, B. H. Choi, et al. Anti-inflammatory effect of low intensity ultrasound (LIUS) on complete Freund’s adjuvant-induced arthritis synovium. Osteoarthritis Cartilage. 20(4):314–322, 2012.

    Article  PubMed  Google Scholar 

  19. Feltham, T., S. Paudel, M. Lobao, et al. Low-intensity pulsed ultrasound suppresses synovial macrophage infiltration and inflammation in injured knees in rats. Ultrasound Med Biol. 47(4):1045–1053, 2021.

    Article  PubMed  Google Scholar 

  20. Nagata, K., T. Nakamura, S. Fujihara, et al. Ultrasound modulates the inflammatory response and promotes muscle regeneration in injured muscles. Ann Biomed Eng. 41(6):1095–1105, 2013.

    Article  PubMed  Google Scholar 

  21. Lammermann, T., P. V. Afonso, B. R. Angermann, et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 498(7454):371–375, 2013.

    Article  PubMed  Google Scholar 

  22. Wang, J. Neutrophils in tissue injury and repair. Cell and Tissue Research. 371(3):531–539, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rennó, A. C. M., R. L. Toma, S. M. Feitosa, et al. Comparative effects of low-intensity pulsed ultrasound and low-level laser therapy on injured skeletal muscle. Photomed Laser Surg. 29(1):5–10, 2011.

    Article  PubMed  Google Scholar 

  24. Saclier, M., S. Cuvellier, M. Magnan, et al. Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS J. 280(17):4118–4130, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. Kruger, P., M. Saffarzadeh, A. N. Weber, et al. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog.11(3):e1004651, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, S.-F., W.-S. Su, C.-H. Wu, et al. Transcranial ultrasound stimulation improves long-term functional outcomes and protects against brain damage in traumatic brain injury. Mol Neurobiol. 55(8):7079–7089, 2018.

    Article  CAS  PubMed  Google Scholar 

  27. Walz, W., and F. S. Cayabyab. Neutrophil infiltration and matrix metalloproteinase-9 in lacunar infarction. Neurochemical Research. 42(9):2560–2565, 2017.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, S., R. Song, Z. Wang, et al. S100A8/A9 in inflammation. Frontiers in Immunology. 9:1298, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sreejit, G., A. Abdel-Latif, B. Athmanathan, et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation. 141(13):1080–1094, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, H., M. He, Y. L. Wang, et al. Low-intensity pulsed ultrasound alleviates doxorubicin-induced cardiotoxicity via inhibition of S100a8/a9-mediated cardiac recruitment of neutrophils. Bioengineering & Translational Medicine.8(6):e10570, 2023.

    Article  CAS  Google Scholar 

  31. Spiller, K. L., and T. J. Koh. Macrophage-based therapeutic strategies in regenerative medicine. Adv Drug Deliv Rev. 122:74–83, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mokarram, N., and R. V. Bellamkonda. A perspective on immunomodulation and tissue repair. Ann Biomed Eng. 42(2):338–351, 2014.

    Article  PubMed  Google Scholar 

  33. Kojima, Y., and T. Watanabe. Low-intensity pulsed ultrasound irradiation attenuates collagen degradation of articular cartilage in early osteoarthritis-like model mice. Journal of Experimental Orthopaedics. 10(1):106, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qin, H., Z. Luo, Y. Sun, et al. Low-intensity pulsed ultrasound promotes skeletal muscle regeneration via modulating the inflammatory immune microenvironment. International Journal of Biological Sciences. 19(4):1123–1145, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Z.-C., Y.-L. Yang, B. Li, et al. Low-intensity pulsed ultrasound promotes spinal fusion by regulating macrophage polarization. Biomed Pharmacother.120:109499, 2019.

    Article  CAS  PubMed  Google Scholar 

  36. Li, Q., and B. A. Barres. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 18(4):225–242, 2018.

    Article  CAS  PubMed  Google Scholar 

  37. Sun, Y., J. Li, X. Xie, et al. Macrophage-osteoclast associations: origin, polarization, and subgroups. Front Immunol.12:778078, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dou, L., X. Shi, X. He, et al. Macrophage phenotype and function in liver disorder. Front Immunol. 10:3112, 2019.

    Article  CAS  PubMed  Google Scholar 

  39. Hsu, C. H., Y. J. Pan, Y. T. Zheng, et al. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARγ signaling pathways. CNS Neuroscience & Therapeutics. 29(12):4113–4123, 2023.

    Article  CAS  Google Scholar 

  40. Xu, L., D. He, and Y. Bai. Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol. 53(10):6709–6715, 2016.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, H., Y. Hu, B. Kong, et al. Low-intensity pulsed ultrasound treatment mitigates ventricular arrhythmias via inhibiting microglia-mediated neuroinflammation in heart failure rat model. International Immunopharmacology.126:111317, 2024.

    Article  CAS  PubMed  Google Scholar 

  42. Su, W. S., C. H. Wu, W. S. Song, et al. Low-intensity pulsed ultrasound ameliorates glia-mediated inflammation and neuronal damage in experimental intracerebral hemorrhage conditions. Journal of Translational Medicine. 21(1):565, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eguchi, K., T. Shindo, K. Ito, et al. Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia - Crucial roles of endothelial nitric oxide synthase. Brain Stimul. 11(5):959–973, 2018.

    Article  PubMed  Google Scholar 

  44. Song, W.-S., T.-H. Hung, S.-H. Liu, et al. Neuroprotection by abdominal ultrasound in lipopolysaccharide-induced systemic inflammation. International Journal of Molecular Sciences. 24(11):9329, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Udagawa, N., M. Koide, M. Nakamura, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 39(1):19–26, 2021.

    Article  CAS  PubMed  Google Scholar 

  46. Crossman, J., N. Alzaheri, M.-N. Abdallah, et al. Low intensity pulsed ultrasound increases mandibular height and Col-II and VEGF expression in arthritic mice. Arch Oral Biol. 104:112–118, 2019.

    Article  CAS  PubMed  Google Scholar 

  47. Meng, J., J. Hong, C. Zhao, et al. Low-intensity pulsed ultrasound inhibits RANKL-induced osteoclast formation via modulating ERK-c-Fos-NFATc1 signaling cascades. American Journal of Translational Research. 10(9):2901–2910, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Feres, M. F. N., C. Kucharski, S. Diar-Bakirly, et al. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: an in vitro study. Arch Oral Biol. 70:73–78, 2016.

    Article  CAS  PubMed  Google Scholar 

  49. Yi, X., L. Wu, J. Liu, et al. Low-intensity pulsed ultrasound protects subchondral bone in rabbit temporomandibular joint osteoarthritis by suppressing TGF-beta1/Smad3 pathway. J Orthop Res. 38(11):2505–2512, 2020.

    Article  CAS  PubMed  Google Scholar 

  50. Liang, C., T. Yang, G. Wu, et al. Therapeutic effect of low-intensity pulsed ultrasound on temporomandibular joint injury induced by chronic sleep deprivation in rats. American Journal of Translational Research. 11(6):3328–3340, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 7(4):292–304, 2007.

    Article  CAS  PubMed  Google Scholar 

  52. Nakashima, T., M. Hayashi, and H. Takayanagi. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 23(11):582–590, 2012.

    Article  CAS  PubMed  Google Scholar 

  53. Yarnall, B. W., C. S. Chamberlain, Z. Hao, et al. Proinflammatory polarization of stifle synovial macrophages in dogs with cruciate ligament rupture. Vet Surg. 48(6):1005–1012, 2019.

    Article  PubMed  Google Scholar 

  54. Doring, A. K., J. Junginger, and M. Hewicker-Trautwein. Cruciate ligament degeneration and stifle joint synovitis in 56 dogs with intact cranial cruciate ligaments: correlation of histological findings and numbers and phenotypes of inflammatory cells with age, body weight and breed. Vet Immunol Immunopathol. 196:5–13, 2018.

    Article  PubMed  Google Scholar 

  55. Hsieh, Y.-L., H.-Y. Chen, and C.-C. Yang. Early intervention with therapeutic low-intensity pulsed ultrasound in halting the progression of post-traumatic osteoarthritis in a rat model. Ultrasound Med Biol. 44(12):2637–2645, 2018.

    Article  PubMed  Google Scholar 

  56. Sato, M., S. Kuroda, K. Q. Mansjur, et al. Low-intensity pulsed ultrasound rescues insufficient salivary secretion in autoimmune sialadenitis. Arthritis Res Ther. 17:278, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zachs, D. P., S. J. Offutt, R. S. Graham, et al. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis. Nat Commun. 10(1):951, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vdovenko, D., and U. Eriksson. Regulatory role of CD4+ T cells in myocarditis. Journal of Immunology Research. 2018:4396351, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhu, J., H. Yamane, and W. E. Paul. Differentiation of effector CD4 T cell populations. Annual review of immunology. 28:445–489, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiong, X., M. Yu, D. Wang, et al. Th17/Treg balance is regulated by myeloid-derived suppressor cells in experimental autoimmune myocarditis. Immunity, Inflammation and Disease.11(6):e872, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu, S., Z. Guo, X. Xu, et al. Protective effect of low-intensity pulsed ultrasound on immune checkpoint inhibitor-related myocarditis via fine-tuning CD4+ T-cell differentiation. Cancer Immunology, Immunotherapy. 73(1):15, 2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, T., Y. Fu, J. Shi, et al. Noninvasive ultrasound stimulation to treat myocarditis through splenic neuro-immune regulation. Journal of Neuroinflammation. 20(1):94, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paradowska-Gorycka, A., A. Wajda, K. Romanowska-Pro’chnicka, et al. Th17/Treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis. Frontiers in Immunology. 11:572858, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomas, R., S. Qiao, and X. Yang. Th17/Treg imbalance: implications in lung inflammatory diseases. International Journal of Molecular Sciences. 24(5):4865, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weiskopf, D., B. Weinberger, and B. Grubeck-Loebenstein. The aging of the immune system. Transpl Int. 22(11):1041–1050, 2009.

    Article  CAS  PubMed  Google Scholar 

  66. Tian, Y., C. Cheng, Y. Wei, et al. The role of exosomes in inflammatory diseases and tumor-related inflammation. Cells. 11(6):1005, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alexander, M., R. Hu, M. C. Runtsch, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 6:7321, 2015.

    Article  CAS  PubMed  Google Scholar 

  68. Li, X., X. Li, J. Lin, et al. Exosomes derived from low-intensity pulsed ultrasound-treated dendritic cells suppress tumor necrosis factor-induced endothelial inflammation. J Ultrasound Med. 38(8):2081–2091, 2019.

    Article  PubMed  Google Scholar 

  69. Song, J., N. Li, Y. Xia, et al. Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J Mol Neurosci. 60(1):115–129, 2016.

    Article  CAS  PubMed  Google Scholar 

  70. Caescu, C. I., X. Guo, L. Tesfa, et al. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21. Blood. 125(8):e1-13, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karki, R., and T. D. Kanneganti. The ‘cytokine storm’: molecular mechanisms and therapeutic prospects. Trends Immunol. 42(8):681–705, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagao, M., N. Tanabe, S. Manaka, et al. LIPUS suppressed LPS-induced IL-1α through the inhibition of NF-κB nuclear translocation via AT1-PLCβ pathway in MC3T3-E1 cells. Journal of Cellular Physiology. 232(12):3337–3346, 2017.

    Article  CAS  PubMed  Google Scholar 

  73. Li, H., Y. Deng, M. Tan, et al. Low-intensity pulsed ultrasound upregulates osteogenesis under inflammatory conditions in periodontal ligament stem cells through unfolded protein response. Stem Cell Research & Therapy. 11(1):215, 2020.

    Article  CAS  Google Scholar 

  74. Zheng, C., S.-M. Wu, H. Lian, et al. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways. J Cell Mol Med. 23(3):1963–1975, 2019.

    Article  CAS  PubMed  Google Scholar 

  75. Yang, T., C. Liang, L. Chen, et al. Low-intensity pulsed ultrasound alleviates hypoxia-induced chondrocyte damage in temporomandibular disorders by modulating the hypoxia-inducible factor pathway. Front Pharmacol. 11:689, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sang, F., J. Xu, Z. Chen, et al. Low-intensity pulsed ultrasound alleviates osteoarthritis condition through focal adhesion kinase-mediated chondrocyte proliferation and differentiation. Cartilage. 13:196S-203S, 2021.

    Article  CAS  PubMed  Google Scholar 

  77. Cao, Q., L. Liu, Y. Hu, et al. Low-intensity pulsed ultrasound of different intensities differently affects myocardial ischemia/reperfusion injury by modulating cardiac oxidative stress and inflammatory reaction. Frontiers in Immunology. 14:1248056, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lu, H., F. Liu, H. Chen, et al. The effect of low-intensity pulsed ultrasound on bone-tendon junction healing: Initiating after inflammation stage. J Orthop Res. 34(10):1697–1706, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hughes, C. E., and R. J. B. Nibbs. A guide to chemokines and their receptors. FEBS J. 285(16):2944–2971, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Borish, L. C., and J. W. Steinke. 2. Cytokines and chemokines. J Allergy Clin Immunol. 111(2 Suppl):460–475, 2003.

    Article  Google Scholar 

  81. Kusuyama, J., T. Nakamura, T. Ohnishi, et al. Low-intensity pulsed ultrasound promotes bone morphogenic protein 9-induced osteogenesis and suppresses inhibitory effects of inflammatory cytokines on cellular responses via Rho-associated kinase 1 in human periodontal ligament fibroblasts. J Cell Biochem. 120(9):14657–14669, 2019.

    Article  CAS  PubMed  Google Scholar 

  82. Kusuyama, J., T. Nakamura, T. Ohnishi, et al. Low-intensity pulsed ultrasound (LIPUS) promotes BMP9-induced osteogenesis and suppresses inflammatory responses in human periodontal ligament-derived stem cells. Journal of Orthopaedic Trauma. 31(7):S4, 2017.

    Article  PubMed  Google Scholar 

  83. Nakao, J., Y. Fujii, J. Kusuyama, et al. Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation. Bone. 58:17–25, 2014.

    Article  CAS  PubMed  Google Scholar 

  84. Talsma, A. D., J. P. Niemi, J. S. Pachter, et al. The primary macrophage chemokine, CCL2, is not necessary after a peripheral nerve injury for macrophage recruitment and activation or for conditioning lesion enhanced peripheral regeneration. J Neuroinflammation. 19(1):179, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim, K. H., and L. M. Staudt. Toll-like receptor signaling. Cold Spring Harbor Perspectives in Biology. 5(1):a011247–a011247, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Duan, T., Y. Du, C. Xing, et al. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol.13:812774, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kawai, T., and S. Akira. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 11(5):373–384, 2010.

    Article  CAS  PubMed  Google Scholar 

  88. Cavaillon, J. M. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon. 149:45–53, 2018.

    Article  CAS  PubMed  Google Scholar 

  89. Akashi-Takamura, S., and K. Miyake. TLR accessory molecules. Current Opinion in Immunology. 20(4):420–425, 2008.

    Article  CAS  PubMed  Google Scholar 

  90. Chen, T.-T., T.-H. Lan, and F.-Y. Yang. Low-Intensity pulsed ultrasound attenuates LPS-induced neuroinflammation and memory impairment by modulation of TLR4/NF-kappaB signaling and CREB/BDNF expression. Cereb Cortex. 29(4):1430–1438, 2019.

    Article  PubMed  Google Scholar 

  91. Chang, J.-W., M.-T. Wu, W.-S. Song, et al. Ultrasound stimulation suppresses LPS-induced proinflammatory responses by regulating NF-kappaB and CREB activation in microglial cells. Cereb Cortex. 30(8):4597–4606, 2020.

    Article  PubMed  Google Scholar 

  92. Yang, F.-Y., W.-H. Chan, C.-Y. Gao, et al. Transabdominal ultrasound alleviates LPS-induced neuroinflammation by modulation of TLR4/NF-κB signaling and tight junction protein expression. Life Sciences.325:121769, 2023.

    Article  CAS  PubMed  Google Scholar 

  93. Kumar, V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol.89:107087, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, T., L. Zhang, D. Joo, et al. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2:17023, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Napetschnig, J., and H. Wu. Molecular basis of NF-kappaB signaling. Annu Rev Biophys. 42:443–468, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Uddin, S. M., B. Richbourgh, Y. Ding, et al. Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthritis Cartilage. 24(11):1989–1998, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, X., B. Hu, J. Sun, et al. Inhibitory effect of low-intensity pulsed ultrasound on the expression of lipopolysaccharide-induced inflammatory factors in U937 cells. J Ultrasound Med. 36(12):2419–2429, 2017.

    Article  PubMed  Google Scholar 

  98. Liu, S., M. Zhou, J. Li, et al. LIPUS inhibited the expression of inflammatory factors and promoted the osteogenic differentiation capacity of hPDLCs by inhibiting the NF-kappaB signaling pathway. J Periodontal Res. 55(1):125–140, 2020.

    Article  CAS  PubMed  Google Scholar 

  99. Sun, Y., W. Z. Liu, T. Liu, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35(6):600–604, 2015.

    Article  CAS  PubMed  Google Scholar 

  100. Cuadrado, A., and A. R. Nebreda. Mechanisms and functions of p38 MAPK signalling. Biochem J. 429(3):403–417, 2010.

    Article  CAS  PubMed  Google Scholar 

  101. Yeung, Y. T., F. Aziz, A. Guerrero-Castilla, et al. Signaling pathways in inflammation and anti-inflammatory therapies. Curr Pharm Des. 24(14):1449–1484, 2018.

    Article  CAS  PubMed  Google Scholar 

  102. Feng, H., W. Guo, J. Han, et al. Role of caveolin-1 and caveolae signaling in endotoxemia and sepsis. Life Sci. 93(1):1–6, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hou, K., S. Li, M. Zhang, et al. Caveolin-1 in autophagy: a potential therapeutic target in atherosclerosis. Clin Chim Acta. 513:25–33, 2021.

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Z., L. Wang, Z. Dong, et al. Heparin inhibits lipopolysaccharide-induced inflammation via inducing caveolin-1 and activating the p38/mitogen-activated protein kinase pathway in murine peritoneal macrophages. Mol Med Rep. 12(3):3895–3901, 2015.

    Article  CAS  PubMed  Google Scholar 

  105. Codrici, E., L. Albulescu, I. D. Popescu, et al. Caveolin-1-knockout mouse as a model of inflammatory diseases. J Immunol Res. 2018:2498576, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Plosa, E. J., J. T. Benjamin, J. M. Sucre, et al. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight.5(2):e129259, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hu, B., Y. Zhang, J. Zhou, et al. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells. PLoS One.9(4):e95168, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Xiao, W., Q. Xu, Z. Zhu, et al. Different performances of CXCR4, integrin-1beta and CCR-2 in bone marrow stromal cells (BMSCs) migration by low-intensity pulsed ultrasound stimulation. Biomed Tech (Berl). 62(1):89–95, 2017.

    Article  CAS  PubMed  Google Scholar 

  109. Iwabuchi, Y., K. Tanimoto, Y. Tanne, et al. Effects of low-intensity pulsed ultrasound on the expression of cyclooxygenase-2 in mandibular condylar chondrocytes. J Oral Facial Pain Headache. 28(3):261–268, 2014.

    Article  PubMed  Google Scholar 

  110. Xia, P., S. Ren, Q. Lin, et al. Low-intensity pulsed ultrasound affects chondrocyte extracellular matrix production via an integrin-mediated p38 MAPK signaling pathway. Ultrasound Med Biol. 41(6):1690–1700, 2015.

    Article  PubMed  Google Scholar 

  111. Kim, S.-H., J. Turnbull, and S. Guimond. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. Journal of Endocrinology. 209(2):139–151, 2011.

    Article  CAS  PubMed  Google Scholar 

  112. Troutman, T. D., J. F. Bazan, and C. Pasare. Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle. 11(19):3559–3567, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng, K., P. Xia, Q. Lin, et al. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes. Ultrasound Med Biol. 40(7):1609–1618, 2014.

    Article  PubMed  Google Scholar 

  114. Xia, P., S. Shen, Q. Lin, et al. Low-intensity pulsed ultrasound treatment at an early osteoarthritis stage protects rabbit cartilage from damage via the integrin/focal adhesion kinase/mitogen-activated protein kinase signaling pathway. J Ultrasound Med. 34(11):1991–1999, 2015.

    Article  PubMed  Google Scholar 

  115. Moustakas, A., K. Pardali, A. Gaal, and C. H. Heldin. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunology letters. 82(1–2):85–91, 2002.

    Article  CAS  PubMed  Google Scholar 

  116. Xie, L., F. Tintani, X. Wang, et al. Systemic neutralization of TGF-beta attenuates osteoarthritis. Ann N Y Acad Sci. 1376(1):53–64, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, R., G. Wu, T. Dai, et al. Naringin attenuates renal interstitial fibrosis by regulating the TGF-beta/Smad signaling pathway and inflammation. Exp Ther Med. 21(1):66, 2021.

    Article  CAS  PubMed  Google Scholar 

  118. Morikawa, M., R. Derynck, and K. Miyazono. TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol.8(5):a021873, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lh, Y. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. International Journal of Biological Sciences. 7(7):1056–1067, 2011.

    Article  Google Scholar 

  120. Yi, X., J. Liu, M.-S. Cheng, et al. Low-intensity pulsed ultrasound inhibits IL-6 in subchondral bone of temporomandibular joint osteoarthritis by suppressing the TGF-beta1/Smad3 pathway. Arch Oral Biol.125:105110, 2021.

    Article  CAS  PubMed  Google Scholar 

  121. Aibara, Y., A. Nakashima, K.-I. Kawano, et al. Daily low-intensity pulsed ultrasound ameliorates renal fibrosis and inflammation in experimental hypertensive and diabetic nephropathy. Hypertension. 76(6):1906–1914, 2020.

    Article  CAS  PubMed  Google Scholar 

  122. Xie, P. TRAF molecules in cell signaling and in human diseases. Journal of molecular signaling. 8(1):7, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shi, J.-H., and S.-C. Sun. Tumor necrosis factor receptor-associated factor regulation of nuclear factor kappab and mitogen-activated protein kinase pathways. Front Immunol. 2018:9, 1849.

    Google Scholar 

  124. Chen, B. B., T. A. Coon, J. R. Glasser, et al. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nat Immunol. 14(5):470–479, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao, X., G. Zhao, Z. Shi, et al. Low-intensity pulsed ultrasound (LIPUS) prevents periprosthetic inflammatory loosening through FBXL2-TRAF6 ubiquitination pathway. Sci Rep. 7:45779, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deretic, V. Autophagy in inflammation, infection, and immunometabolism. Immunity. 54(3):437–453, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, Y., H. Wang, F. Pei, et al. FoxO3a regulates inflammation-induced autophagy in odontoblasts. Journal of Endodontics. 44(5):786–791, 2018.

    Article  PubMed  Google Scholar 

  128. Racanelli, A. C., S. A. Kikkers, A. M. K. Choi, et al. Autophagy and inflammation in chronic respiratory disease. Autophagy. 14(2):221–232, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Li, Y., C. Sun, G. Feng, et al. Low-intensity pulsed ultrasound activates autophagy in periodontal ligament cells in the presence or absence of lipopolysaccharide. Arch Oral Biol.117:104769, 2020.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, B., H. Chen, J. Ouyang, et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1beta and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy. 16(7):1262–1278, 2020.

    Article  CAS  PubMed  Google Scholar 

  131. Xia, P., X. Wang, Q. Wang, et al. Low-intensity pulsed ultrasound promotes autophagy-mediated migration of mesenchymal stem cells and cartilage repair. Cell Transplantation. 30:963689720986142, 2021.

    Article  PubMed  Google Scholar 

  132. Huang, X., L. Niu, L. Meng, et al. Transcranial low-intensity pulsed ultrasound stimulation induces neuronal autophagy. IEEE Trans Ultrason Ferroelectr Freq Control. 68(1):46–53, 2021.

    Article  PubMed  Google Scholar 

  133. Shirai, T., R. R. Nazarewicz, B. B. Wallis, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 213(3):337–354, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Watanabe, Y., and M. Tanaka. p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J Cell Sci. 124(Pt 16):2692–2701, 2011.

    Article  CAS  PubMed  Google Scholar 

  135. Harb, I. A. A. H., D. Sabry, D. F. El-Yasergy, W. M. Hamza, and A. Mostafa. Nicorandil prevents the nephrotoxic effect of cyclosporine-A in albino rats through modulation of HIF-1α/VEGF/eNOS signaling. Can J Physiol Pharmacol. 99(4):411–417, 2021.

    Article  CAS  PubMed  Google Scholar 

  136. Wu, Q., and S. D. Finley. Mathematical model predicts effective strategies to inhibit VEGF-eNOS signaling. J Clin Med. 9(5):1255, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nunes, A. K., C. Raposo, S. W. Rocha, et al. Involvement of AMPK, IKbetaalpha-NFkappaB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Res. 1627:119–133, 2015.

    Article  CAS  PubMed  Google Scholar 

  138. Grumbach, I. M., W. Chen, S. A. Mertens, et al. A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. J Mol Cell Cardiol. 39(4):595–603, 2005.

    Article  CAS  PubMed  Google Scholar 

  139. Hanawa, K., K. Ito, K. Aizawa, et al. Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia. PLoS One.9(8):e104863, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ogata, T., K. Ito, T. Shindo, et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice. PLoS One.12(9):e0185555, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ichijo, S., T. Shindo, K. Eguchi, et al. Low-intensity pulsed ultrasound therapy promotes recovery from stroke by enhancing angio-neurogenesis in mice in vivo. Scientific Reports. 11(1):4958, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Watanabe, T., Y. Matsumoto, K. Nishimiya, et al. Low-intensity pulsed ultrasound therapy suppresses coronary adventitial inflammatory changes and hyperconstricting responses after coronary stent implantation in pigs in vivo. PLoS One.16(9):e0257175, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lu, H., C. Chen, J. Qu, et al. Initiation timing of low-intensity pulsed ultrasound stimulation for tendon-bone healing in a rabbit model. Am J Sports Med. 44(10):2706–2715, 2016.

    Article  PubMed  Google Scholar 

  144. Kosaka, T., T. Masaoka, and K. Yamamoto. Possible molecular mechanism of promotion of repair of acute Achilles tendon rupture by low intensity-pulsed ultrasound treatment in a rat model. The West Indian Medical Journal. 60(3):263–268, 2011.

    CAS  PubMed  Google Scholar 

  145. Yan, K., T. Yang, J. Xu, et al. Synergistic effect of low-frequency ultrasound and antibiotics on the treatment of Klebsiella pneumoniae pneumonia in mice. Microb Biotechnol. 15(11):2819–2830, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundations of China (82073894), Cultivation Project of PLA General Hospital for Distinguished Young Scientists (2020-JQPY-004), and New Medicine Clinical Research Fund (4246Z512).

Author information

Authors and Affiliations

Authors

Contributions

Wenxin Liang and Kaicheng Yan reviewed the literature, extracted and analyzed the data; Wenxin Liang and Beibei Liang drafted the manuscript; Guanxuanzi Zhang and Jiaju Zhuo extracted the data and drafted the figure; as corresponding authors, Yun Cai contributed to study design, protocol, data extraction, data analysis, and writing.

Corresponding author

Correspondence to Yun Cai.

Ethics declarations

Conflict of interest

The authors reported no potential conflict of interest.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Liang, B., Yan, K. et al. Low-Intensity Pulsed Ultrasound: A Physical Stimulus with Immunomodulatory and Anti-inflammatory Potential. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03523-y

Keywords

Navigation