Skip to main content
Log in

A rapid electromechanical model to predict reverse remodeling following cardiac resynchronization therapy

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cardiac resynchronization therapy (CRT) is an effective therapy for patients who suffer from heart failure and ventricular dyssynchrony such as left bundle branch block (LBBB). When it works, it reverses adverse left ventricular (LV) remodeling and the progression of heart failure. However, CRT response rate is currently as low as 50–65%. In theory, CRT outcome could be improved by allowing clinicians to tailor the therapy through patient-specific lead locations, timing, and/or pacing protocol. However, this also presents a dilemma: there are far too many possible strategies to test during the implantation surgery. Computational models could address this dilemma by predicting remodeling outcomes for each patient before the surgery takes place. Therefore, the goal of this study was to develop a rapid computational model to predict reverse LV remodeling following CRT. We adapted our recently developed computational model of LV remodeling to simulate the mechanics of ventricular dyssynchrony and added a rapid electrical model to predict electrical activation timing. The model was calibrated to quantitatively match changes in hemodynamics and global and local LV wall mass from a canine study of LBBB and CRT. The calibrated model was used to investigate the influence of LV lead location and ischemia on CRT remodeling outcome. Our model results suggest that remodeling outcome varies with both lead location and ischemia location, and does not always correlate with short-term improvement in QRS duration. The results and time frame required to customize and run this model suggest promise for this approach in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aalen JM, Remme EW, Larsen CK, Andersen OS, Krogh M, Duchenne J, Hopp E, Ross S, Beela AS, Kongsgaard E, Bergsland J, Odland HH, Skulstad H, Opdahl A, Voigt JU, Smiseth OA (2019) Mechanism of abnormal septal motion in left bundle branch block. JACC Cardiovasc Imag 12(12):2402–2413. https://doi.org/10.1016/j.jcmg.2018.11.030

    Article  Google Scholar 

  • Aguado-Sierra J, Krishnamurthy A, Villongco C, Chuang J, Howard E, Gonzales MJ, Omens J, Krummen DE, Narayan S, Kerckhoffs RC, McCulloch AD (2011) Patient-specific modeling of dyssynchronous heart failure: a case study. Prog Biophys Molecular Biol 107(1):147–155. https://doi.org/10.1016/j.pbiomolbio.2011.06.014

    Article  Google Scholar 

  • Arts T, Delhaas T, Bovendeerd P, Verbeek X, Prinzen FW (2005) Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am J Physiol-Heart Circul Physiol 288(4):H1943–H1954. https://doi.org/10.1152/ajpheart.00444.2004

    Article  Google Scholar 

  • Arumugam J, Mojumder J, Kassab G, Lee LC (2019) Model of anisotropic reverse cardiac growth in mechanical dyssynchrony. Sci Rep 9:12670. https://doi.org/10.1038/s41598-019-48670-8

  • Auricchio A, Ding J, Spinelli JC, Kramer AP, Salo RW, Hoersch W, KenKnight BH, Klein HU (2002) Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am College Cardiol 39(7):1163–1169. https://doi.org/10.1016/S0735-1097(02)01727-8

  • Baldasseroni S et al (2002) Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from the Italian Network on Congestive Heart Failure. Am Heart J 143(3):398–405. https://doi.org/10.1067/mhj.2002.121264

    Article  Google Scholar 

  • Beard DA, Pettersen KH, Carlson BE, Omholt SW, Bugenhagen SM (2013) A computational analysis of the long-term regulation of arterial pressure. F1000 Res 2:208. https://doi.org/10.12688/f1000research.2-208.v1d

  • Beller G, Zaret B (2000) Clinical cardiology: new frontiers. Circulation 101:1465–1478

    Article  Google Scholar 

  • Bilchick KC, Helm RH, Kass DA (2007) Physiology of biventricular pacing. Curr Cardiol Rep 9(5):358–365

    Article  Google Scholar 

  • Bilchick KC, Kuruvilla S, Hamirani YS, Ramachandran R, Clarke SA, Parker KM, Stukenborg GJ, Mason P, Ferguson JD, Moorman JR, Malhotra R, Mangrum JM, Darby AE, Dimarco J, Holmes JW, Salerno M, Kramer CM, Epstein FH (2014) Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes. J Am Coll Cardiol 63(16):1657–1666

    Article  Google Scholar 

  • Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350(21):2140–2150. https://doi.org/10.1056/NEJMoa032423

  • Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorcsan J, Sutton MSJ, Sutter JD, Murillo J (2008) Results of the predictors of response to crt (prospect) trial. Circulation 117(20):2608–2616. https://doi.org/10.1161/CIRCULATIONAHA.107.743120

    Article  Google Scholar 

  • Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352(15):1539–1549. https://doi.org/10.1056/nejmoa050496

    Article  Google Scholar 

  • Constantino J, Hu Y, Trayanova NA (2012) A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of CRT. Prog Biophys Mol Biol 110(2–3):372–379. https://doi.org/10.1016/j.pbiomolbio.2012.07.009

    Article  Google Scholar 

  • Didié M, Biermann D, Buchert R, Hess A, Wittköpper K, Christalla P, Döker S, Jebran F, Schöndube F, Reichenspurner H, El-Armouche A, Zimmermann Wh (2013) Preservation of left ventricular function and morphology in volume-loaded versus volume-unloaded heterotopic heart transplants. Am J Physiol-Heart Circul Physiol 305(4):H533–H541. https://doi.org/10.1152/ajpheart.00218.2013

    Article  Google Scholar 

  • Estrada AC, Yoshida K, Saucerman JJ, Holmes JW (2020) A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech Model Mechanobiol 20:293–307. https://doi.org/10.1007/s10237-020-01385-6

  • Fixsen LS, de Lepper AG, Strik M, van Middendorp LB, Prinzen FW, van de Vosse FN, Houthuizen P, Lopata RG (2019) Echocardiographic assessment of left bundle branch-related strain dyssynchrony: a comparison with tagged MRI. Ultrasound Med Biol 45(8):2063–2074. https://doi.org/10.1016/j.ultrasmedbio.2019.03.012

    Article  Google Scholar 

  • Genet M, Lee LC, Baillargeon B, Guccione JM, Kuhl E (2016) Modeling pathologies of diastolic and systolic heart failure. Ann Biomed Eng 44(1):112–127. https://doi.org/10.1007/s10439-015-1351-2

    Article  Google Scholar 

  • Giffard-Roisin S, Jackson T, Fovargue L, Lee J, Delingette H, Razavi R, Ayache N, Sermesant M (2017) Noninvasive personalization of a cardiac electrophysiology model from body surface potential mapping. IEEE Trans Biomed Eng 64(9):2206–2218. https://doi.org/10.1109/TBME.2016.2629849

    Article  Google Scholar 

  • Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265(3):433–442. https://doi.org/10.1016/j.jtbi.2010.04.023

  • Grines CL, Bashore TM, Boudoulas H, Olson S, Shafer P, Wooley CF (1989) Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation 79(4):845–853. https://doi.org/10.1161/01.cir.79.4.845

  • Holmes JW (2004) Candidate mechanical stimuli for hypertrophy during volume overload. J Appl Physiol 97(4):1453–1460. https://doi.org/10.1152/japplphysiol.00834.2003

    Article  Google Scholar 

  • Hunter PJ, Smaill BH (1988) The analysis of cardiac function: a continuum approach. Prog Biophys Mol Biol 52(2):101–164. https://doi.org/10.1016/0079-6107(88)90004-1

    Article  Google Scholar 

  • Huntjens PR, Walmsley J, Ploux S, Bordachar P, Prinzen FW, Delhaas T, Lumens J (2014) Influence of left ventricular lead position relative to scar location on response to cardiac resynchronization therapy: a model study. Europace 16:iv62–iv68. https://doi.org/10.1093/europace/euu231

    Article  Google Scholar 

  • Hyde ER, Behar JM, Claridge S, Jackson T, Lee AW, Remme EW, Sohal M, Plank G, Razavi R, Rinaldi CA, Niederer SA (2015) Beneficial effect on cardiac resynchronization from left ventricular endocardial pacing is mediated by early access to high conduction velocity tissue: electrophysiological simulation study. Circulation: Arrhyth Electrophysiol 8(5):1164–1172. https://doi.org/10.1161/CIRCEP.115.002677

    Article  Google Scholar 

  • Jeyaraj D, Wilson LD, Zhong J, Flask C, Saffitz JE, Deschênes I, Yu X, Rosenbaum DS (2007) Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation 115(25):3145–3155. https://doi.org/10.1161/CIRCULATIONAHA.107.688317

    Article  Google Scholar 

  • Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE (1995) Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 91(3):802–812. https://doi.org/10.1161/01.CIR.91.3.802

  • Kayvanpour E, Mansi T, Sedaghat-Hamedani F, Amr A, Neumann D, Georgescu B, Seegerer P, Kamen A, Haas J, Frese KS, Irawati M, Wirsz E, King V, Buss S, Mereles D, Zitron E, Keller A, Katus HA, Comaniciu D, Meder B (2015) Towards personalized cardiology: multi-scale modeling of the failing heart. PLoS ONE 10(7):e0134869. https://doi.org/10.1371/journal.pone.0134869

  • Kerckhoffs RCP, Bovendeerd PHM, Kotte JCS, Prinzen FW, Smits K, Arts T (2003) Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann Biomed Eng 31(5):536–547. https://doi.org/10.1114/1.1566447

  • Kerckhoffs RCP, Omens J, McCulloch AD (2012a) A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech Res Commun 42:40–50. https://doi.org/10.1016/j.mechrescom.2011.11.004

  • Kerckhoffs RCP, Omens JH, McCulloch AD (2012b) Mechanical discoordination increases continuously after the onset of left bundle branch block despite constant electrical dyssynchrony in a computational model of cardiac electromechanics and growth. Europace : European Pacing, Arrhythmias, and Cardiac Electrophysiol J Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiol the European Society of Cardiology 14(suppl 5):v65–v72. https://doi.org/10.1093/europace/eus274

  • Kleaveland JP, Kussmaul WG, Vinciguerra T, Diters R, Carabello BA (1988) Volume overload hypertrophy in a closed-chest model of mitral regurgitation. Am J Physiol 254(6 Pt 2):H1034–1041. https://doi.org/10.1152/ajpheart.1988.254.6.H1034

  • Kroon W, Delhaas T, Arts T, Bovendeerd P (2009) Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech Model Mechanobiol 8(4):301–309. https://doi.org/10.1007/s10237-008-0136-z

  • Lee AW, Nguyen UC, Razeghi O, Gould J, Sidhu BS, Sieniewicz B, Behar J, Mafi-Rad M, Plank G, Prinzen FW, Rinaldi CA, Vernooy K, Niederer S (2019) A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data. Med Image Anal 57:197–213. https://doi.org/10.1016/j.media.2019.06.017

    Article  Google Scholar 

  • Lumens J, Delhaas T, Kirn B, Arts T (2009) Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. https://doi.org/10.1007/s10439-009-9774-2

  • Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram. II. Ischemia Inf Circul Res 43(2):315–323. https://doi.org/10.1161/01.RES.43.2.315

    Article  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2015) Heart disease and stroke statistics–2016 Update, vol 133. https://doi.org/10.1161/cir.0000000000000350

  • Nagatomo Y, Carabello BA, Hamawaki M, Nemoto S, Matsuo T, McDermott PJ (1999) Translational mechanisms accelerate the rate of protein synthesis during canine pressure-overload hypertrophy. Am J Physiol Heart Circ Physiol 277(6):H2176–H2184. https://doi.org/10.1152/ajpheart.1999.277.6.H2176

  • Nakano K, Swindle MM, Spinale F, Ishihara K, Kanazawa S, Smith A, Biederman RWW, Clamp L, Hamada Y, Zile MR, Carabello BA (1991) Depressed contractile function due to canine mitral regurgitation improves after correction of the volume overload. J Clin Investig 87(6):2077–2086. https://doi.org/10.1172/JCI115238

  • Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89(2):336–343. https://doi.org/10.1093/cvr/cvq318

    Article  Google Scholar 

  • Okada Ji, Washio T, Nakagawa M, Watanabe M, Kadooka Y, Kariya T, Yamashita H, Yamada Y, Si Momomura, Nagai R, Hisada T, Sugiura S (2017) Multi-scale, tailor-made heart simulation can predict the effect of cardiac resynchronization therapy. J Mol Cell Cardiol 108:17–23. https://doi.org/10.1016/j.yjmcc.2017.05.006

    Article  Google Scholar 

  • Phung TKN, Waters C, Holmes JW (2019) Open-source routines for building personalized left ventricular models from cardiac MRI data. J Biomech Eng 142(2):024504. https://doi.org/10.1115/1.4043876

  • Prinzen FW, Cheriex EC, Delhaas T, van Oosterhout MFM, Arts T, Wellens HJJ, Reneman RS (1995) Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: A study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J 130(5):1045–1053. https://doi.org/10.1016/0002-8703(95)90207-4

  • Rademakers LM, Van Kerckhoven R, Van Deursen CJ, Hunnik AV, Strik M, Kuiper M, Lampert A, Klersy C, Leyva F, Auricchio A, Maessen JG, Prinzen FW (2010) Myocardial infarction does not preclude electrical and hemodynamic benefits of cardiac resynchronization therapy in dyssynchronous canine hearts. Circulation: Arrhythm Electrophysiol 3(4):361–368. https://doi.org/10.1161/CIRCEP.109.931865

    Article  Google Scholar 

  • Rapacciuolo A, Esposito G, Caron K, Mao L, Thomas SA, Rockman HA (2001) Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol 38(3):876–882. https://doi.org/10.1016/S0735-1097(01)01433-4

    Article  Google Scholar 

  • Roberts DE, Hersh LT, Scher AM (1979) Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Circ Res 44(5):701–712. https://doi.org/10.1161/01.RES.44.5.701

    Article  Google Scholar 

  • Rondanina E, Bovendeerd PHM (2020a) Evaluation of stimulus - effect relations in left ventricular growth using a simple multiscale model. Biomech Model Mechanobiol 19(1):263–273. https://doi.org/10.1007/s10237-019-01209-2

  • Rondanina E, Bovendeerd PHM (2020b) Stimulus – effect relations for left ventricular growth obtained with a simple multi - scale model: the influence of hemodynamic feedback. Biomech Model Mechanobiol 19:2111–2126, https://doi.org/10.1007/s10237-020-01327-2

  • Santamore WP, Burkhoff D (1991) Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol Heart Circ Physiol 260(1):H146–H157. https://doi.org/10.1152/ajpheart.1991.260.1.H146

  • Sasayama S, Ross J, Franklin D, Bloor CM, Bishop S, Dilley RB (1976) Adaptations of the left ventricle to chronic pressure overload. Circ Res 38(3):172–178. https://doi.org/10.1161/01.RES.38.3.172

  • Shamim W, Francis DP, Yousufuddin M, Varney S, Pieopli MF, Anker SD, Coats AJ (1999) Intraventricular conduction delay: a prognostic marker in chronic heart failure. Int J Cardiol 70(2):171–178. https://doi.org/10.1016/S0167-5273(99)00077-7

    Article  Google Scholar 

  • St John Sutton MG, Plappert T, Abraham WT, Smith AL, DeLurgio DB, Leon AR, Loh E, Kocovic DZ, Fisher WG, Ellestad M, Messenger J, Kruger K, Hilpisch KE, Hill MR (2003) Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107(15):1985–1990. https://doi.org/10.1161/01.CIR.0000065226.24159.E9

    Article  Google Scholar 

  • Streeter DD, Hanna WT (1973) Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circul Res 33(6):656–664. https://doi.org/10.1161/01.RES.33.6.656

    Article  Google Scholar 

  • Sunagawa K, Maughan WL, Sagawa K (1983) Effect of regional ischemia on the left-ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ Res 52(2):170–178. https://doi.org/10.1161/01.RES.52.2.170

  • Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79(1):215–262. https://doi.org/10.1152/physrev.1999.79.1.215

    Article  Google Scholar 

  • Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NM, Ferguson TB, Hammill SC, Karasik PE, Link MS, Marine JE, Schoenfeld MH, Shanker AJ, Silka MJ, Stevenson LW, Stevenson WG, Varosy PD (2012) 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. Circulation 126(14):1784–1800. https://doi.org/10.1161/cir.0b013e3182618569

    Article  Google Scholar 

  • Vernooy K, Verbeek XAAM, Peschar M, Crijns HJGM, Arts T, Cornelussen RNM, Prinzen FW (2005) Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J 26(1):91–98. https://doi.org/10.1093/eurheartj/ehi008

  • Vernooy K, Cornelussen RN, Verbeek XA, Vanagt WY, Van Hunnik A, Kuiper M, Arts T, Crijns HJ, Prinzen FW (2007) Cardiac resynchronization therapy cures dyssynchronopathy in canine left bundle-branch block hearts. Eur Heart J 28(17):2148–2155. https://doi.org/10.1093/eurheartj/ehm207

    Article  Google Scholar 

  • Walmsley J, Arts T, Derval N, Bordachar P, Cochet H, Ploux S, Prinzen FW, Delhaas T, Lumens J (2015) Fast simulation of mechanical heterogeneity in the electrically asynchronous heart using the multipatch module. PLoS Comput Biol 11(7):e1004284. https://doi.org/10.1371/journal.pcbi.1004284

  • Walmsley J, Huntjens PR, Prinzen FW, Delhaas T, Lumens J (2016) Septal flash and septal rebound stretch have different underlying mechanisms. Am J Physiol Heart Circ Physiol 310(3):H394–H403. https://doi.org/10.1152/ajpheart.00639.2015

    Article  Google Scholar 

  • Weinberg S, Iravanian S, Tung L (2008) Representation of collective electrical behavior of cardiac cell sheets. Biophys J 95(3):1138–1150. https://doi.org/10.1529/biophysj.107.128207

    Article  Google Scholar 

  • Willemen E, Schreurs R, Huntjens PR, Strik M, Plank G, Vigmond E, Walmsley J, Vernooy K, Delhaas T, Prinzen FW, Lumens J (2019) The left and right ventricles respond differently to variation of pacing delays in cardiac resynchronization therapy: a combined experimental-computational approach. Frontiers Physiol 10(FEB):1–13. https://doi.org/10.3389/fphys.2019.00017

    Article  Google Scholar 

  • Witzenburg CM, Holmes JW (2017) A Comparison of Phenomenologic Growth Laws for Myocardial Hypertrophy. J Elasticity 129(1–2):257–281. https://doi.org/10.1007/s10659-017-9631-8

  • Witzenburg CM, Holmes JW (2018) Predicting the time course of ventricular dilation and thickening using a rapid compartmental model. J Cardiovasc Transl Res 11(2):109–122. https://doi.org/10.1007/s12265-018-9793-1

    Article  Google Scholar 

  • Witzenburg C, Holmes JW (2019) The impact of hemodynamic reflex compensation following myocardial infarction on subsequent ventricular remodeling. J Biomech Eng 141(9):091010. https://doi.org/10.1115/1.4043867

  • Yamazaki T, Komuro I, Shiojima I, Yazaki Y (1996) Angiotensin II mediates mechanical stress-induced cardiac hypertrophy. Diabetes Res Clin Pract 30(SUPPL. 1):258–265. https://doi.org/10.1016/S0168-8227(96)80046-5

    Article  Google Scholar 

  • Yang H, Schmidt LP, Wang Z, Yang X, Shao Y, Borg TK, Markwald R, Runyan R, Gao BZ (2016) Dynamic myofibrillar remodeling in live cardiomyocytes under static stretch. Sci Rep 6:20674. https://doi.org/10.1038/srep20674

  • Yoshida K, McCulloch AD, Omens JH, Holmes JW (2019) Predictions of hypertrophy and its regression in response to pressure overload. Biomech Model Mechanobiol 19:1079–1089. https://doi.org/10.1007/s10237-019-01271-w

Download references

Acknowledgements

This study was funded by the National Institutes of Health (U01 HL127654) and the Seraph Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 731 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oomen, P.J.A., Phung, TK.N., Weinberg, S.H. et al. A rapid electromechanical model to predict reverse remodeling following cardiac resynchronization therapy. Biomech Model Mechanobiol 21, 231–247 (2022). https://doi.org/10.1007/s10237-021-01532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01532-7

Keywords

Navigation