Skip to main content
Log in

Contribution of Soft Tissue Passive Forces in Thumb Carpometacarpal Joint Distraction

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Thumb carpometacarpal joint space changes when the surrounding soft tissues including the capsule, ligaments, and tendons are stretched or pulled away. When at rest, joint forces originate from passive contraction of muscles and the involvement of joint capsule and ligaments. Previous biomechanical models of hand and finger joints have mostly focused on the assessment of joint properties when muscles were active. This study aims to present an experimental-numerical biomechanical model of thumb carpometacarpal joint to explore the contribution of tendons, ligaments, and other soft tissues in the passive forces during distraction. Five fresh cadaveric specimens were tested using a distractor device to measure the applied forces upon gradual distraction of the intact joint. The subsequent step involved inserting a minuscule sensor into the joint capsule through a small incision, while preserving the integrity of tendons and ligaments, in order to accurately measure the fundamental intra-articular forces. A numerical model was also used to calculate the passive forces of tendons and ligaments. Before the separation of bones, the forces exerted by tendons and ligaments were relatively small compared to the capsule force, which accounted for approximately 92% of the total applied force. Contribution of tendons and ligaments, however, increased by further distraction. The passive force contribution by tendons at 2-mm distraction was determined less than 11%, whereas it reached up to 74% for the ligaments. The present study demonstrated that the ligament-capsule complex plays significant contribution in passive forces of thumb carpometacarpal joint during distraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Swigart, C. R., R. G. Eaton, S. Z. Glickel, and C. Johnson. Splinting in the treatment of arthritis of the first carpometacarpal joint. J. Hand Surg. 24(1):86–91, 1999.

    Article  CAS  Google Scholar 

  2. Goto, A., S. Leng, K. Sugamoto, W. P. Cooney, S. Kakar, and K. Zhao. In vivo pilot study evaluating the thumb carpometacarpal joint during circumduction. Clin. Orthop. and Relat. Res.®. 472:1106–1113, 2014.

    Article  Google Scholar 

  3. Li, Y. K., and C. P. White. Carpometacarpal osteoarthritis of the thumb. CMAJ. 185(2):149–149, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neumann, D. A., and T. Bielefeld. The carpometacarpal joint of the thumb: stability, deformity, and therapeutic intervention. J. Orthop. Sports Phys. Therapy. 33(7):386–399, 2003.

    Article  Google Scholar 

  5. Lafeber, F. P., F. Intema, P. M. Van Roermund, and A. C. Marijnissen. Unloading joints to treat osteoarthritis, including joint distraction. Curr. Opin. Rheumatol. 18(5):519–525, 2006.

    Article  PubMed  Google Scholar 

  6. Ateshian, G. A., J. W. Ark, M. P. Rosenwasser, R. J. Pawluk, L. J. Soslowsky, and V. C. Mow. Contact areas in the thumb carpometacarpal joint. J. Orthop. Res. 13(3):450–458, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. Cooney, W., 3rd., and E. Chao. Biomechanical analysis of static forces in the thumb during hand function. J. Bone Joint Surg. Am. 59(1):27–36, 1977.

    Article  PubMed  Google Scholar 

  8. BE, V. G. F. et al. Thumb CMC joint biomechanics: a novel device for dynamic splinting. UMass Medical School, 2015.

  9. Gardner, T., M. Evans, A. Simpson, P. Kyberd, and J. Kenwright. A method of examining the magnitude and origin of “soft” and “hard” tissue forces resisting limb lengthening. Med. Eng. Phys. 19(5):405–411, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Shrivastava, N., M. F. Koff, A. E. Abbot, V. C. Mow, M. P. Rosenwasser, and R. J. Strauch. Simulated extension osteotomy of the thumb metacarpal reduces carpometacarpal joint laxity in lateral pinch. J. Hand Surg. 28(5):733–738, 2003.

    Article  Google Scholar 

  11. Spaans, A. J., L. P. V. Minnen, A. Braakenburg, and A. B. Mink van der Molen. Joint distraction for thumb carpometacarpal osteoarthritis: a feasibility study with 1-year follow-up. J. Plast. Surg. Hand Surg. 51(4):254–258, 2017.

    Article  PubMed  Google Scholar 

  12. Ottenhoff, J. S., A. J. Spaans, A. Braakenburg, T. Teunis, L. P. van Minnen, and A. B. M. van der Molen. Joint distraction for thumb carpometacarpal osteoarthritis: 2-year follow-up results of 20 patients. J. Wrist Surg. 10(06):502–510, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ottenhoff, J. S., T. Teunis, A. Braakenburg, and A. B. Mink van der Molen. Can we decrease the duration of basal thumb joint distraction for early osteoarthritis from 8 to 6 weeks? Study protocol for a non-inferiority randomized controlled trial. Trials. 22(1):316, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fischer, K. J., J. E. Johnson, A. J. Waller, T. E. McIff, E. Bruce Toby, and M. Bilgen. MRI-based modeling for radiocarpal joint mechanics: validation criteria and results for four specimen-specific models, 2011.

  15. Gareis, H., S. Moshe, R. Baratta, R. Best, and R. D’Ambrosia. The isometric length-force models of nine different skeletal muscles. J. Biomech. 25(8):903–916, 1992.

    Article  CAS  PubMed  Google Scholar 

  16. P.-H. Kuo and A. D. Deshpande. Contribution of passive properties of muscle-tendon units to the metacarpophalangeal joint torque of the index finger. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2010, pp. 288–294.

  17. Kim, E., and A. Freivalds. Two-dimensional biomechanical thumb model for pipetting. Int. J. Ind. Ergon. 68:165–175, 2018.

    Article  Google Scholar 

  18. Esteki, A., and J. M. Mansour. A dynamic model of the hand with application in functional neuromuscular stimulation. Ann. Biomed. Eng. 25:440–451, 1997.

    Article  CAS  PubMed  Google Scholar 

  19. McFarland, D. C., B. I. Binder-Markey, J. A. Nichols, S. J. Wohlman, M. de Bruin, and W. M. Murray. A musculoskeletal model of the hand and wrist capable of simulating functional tasks. IEEE Trans. Biomed. Eng. 70:1424–1435, 2022.

    Article  Google Scholar 

  20. Vigouroux, L., M. Domalain, and E. Berton. Comparison of tendon tensions estimated from two biomechanical models of the thumb. J. Biomech. 42(11):1772–1777, 2009.

    Article  PubMed  Google Scholar 

  21. Faudot, B., J.-L. Milan, B. Goislard de Monsabert, T. Le Corroller, and L. Vigouroux. Estimation of joint contact pressure in the index finger using a hybrid finite element musculoskeletal approach. Comput. Methods Biomech. Biomed. Eng. 23(15):1225–1235, 2020.

    Article  Google Scholar 

  22. Jacobson, M. D., R. Raab, B. M. Fazeli, R. A. Abrams, M. J. Botte, and R. L. Lieber. Architectural design of the human intrinsic hand muscles. J. Hand Surg. 17(5):804–809, 1992.

    Article  CAS  Google Scholar 

  23. Kuo, P.-H., and A. D. Deshpande. Muscle-tendon units provide limited contributions to the passive stiffness of the index finger metacarpophalangeal joint. J. Biomech. 45(15):2531–2538, 2012.

    Article  PubMed  Google Scholar 

  24. Garner, B. A., and M. G. Pandy. Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31:207–220, 2003.

    Article  PubMed  Google Scholar 

  25. Rezaeian, A., H. Hafiz, A. Moradi, A. Akbarzadeh, and M. Daliri. Thumb carpometacarpal joint reaction force during distraction: a cadaveric study. J. Hand Surg. Eur. Vol. 48:357–359, 2022.

    Article  PubMed  Google Scholar 

  26. Yang, L., G. Cai, L. Coulton, and M. Saleh. Knee joint reaction force during tibial diaphyseal lengthening: a study on a rabbit model. J. Biomech. 37(7):1053–1059, 2004.

    Article  PubMed  Google Scholar 

  27. Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues. Berlin: Springer, 2013.

    Google Scholar 

  28. Sancho-Bru, J., A. Perez-Gonzalez, M. Vergara-Monedero, and D. Giurintano. A 3-D dynamic model of human finger for studying free movements. J. Biomech. 34(11):1491–1500, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Roux, A., S. Laporte, J. Lecompte, L.-L. Gras, and I. Iordanoff. Influence of muscle-tendon complex geometrical parameters on modeling passive stretch behavior with the discrete element method. J. Biomech. 49(2):252–258, 2016.

    Article  CAS  PubMed  Google Scholar 

  30. Valero-Cuevas, F. J., M. E. Johanson, and J. D. Towles. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36(7):1019–1030, 2003.

    Article  PubMed  Google Scholar 

  31. Holzbaur, K. R., W. M. Murray, and S. L. Delp. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33:829–840, 2005.

    Article  PubMed  Google Scholar 

  32. Gonzalez, R. V., T. S. Buchanan, and S. L. Delp. How muscle architecture and moment arms affect wrist flexion-extension moments. J. Biomech. 30(7):705–712, 1997.

    Article  CAS  PubMed  Google Scholar 

  33. L. Y. Chang and Y. Matsuoka. A kinematic thumb model for the ACT hand. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, IEEE, 2006, pp. 1000–1005.

  34. Reid, D. A., and P. J. McNair. Passive force, angle, and stiffness changes after stretching of hamstring muscles. Med. Sci. Sports Exerc. 36(11):1944–1948, 2004.

    Article  PubMed  Google Scholar 

  35. Jansen, M. P., and S. C. Mastbergen. Joint distraction for osteoarthritis: clinical evidence and molecular mechanisms. Nat. Rev. Rheumatol. 18:35–46, 2022.

    Article  CAS  PubMed  Google Scholar 

  36. Marijnissen, A. C., P. M. Van Roermund, J. Van Melkebeek, W. Schenk, A. J. Verbout, J. W. Bijlsma, and F. P. Lafeber. Clinical benefit of joint distraction in the treatment of severe osteoarthritis of the ankle: proof of concept in an open prospective study and in a randomized controlled study. Arthr. Rheum.: Off. J. Am. Coll. Rheumatol. 46:2893–2902, 2002.

    Article  Google Scholar 

  37. Ploegmakers, J., P. Van Roermund, J. Van Melkebeek, J. Lammens, J. Bijlsma, F. Lafeber, and A. Marijnissen. Prolonged clinical benefit from joint distraction in the treatment of ankle osteoarthritis. Osteoarthr. Cartil. 13:582–588, 2005.

    Article  CAS  Google Scholar 

  38. Wiegant, K., P. Van Roermund, F. Intema, S. Cotofana, F. Eckstein, S. Mastbergen, and F. Lafeber. Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis. Osteoarthr. Cartil. 21:1660–1667, 2013.

    Article  CAS  Google Scholar 

  39. Toft, R., and N. Berme. A biomechanical analysis of the joints of the thumb. J. Biomech. 13(4):353–360, 1980.

    Article  CAS  PubMed  Google Scholar 

  40. Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125(1):70–77, 2003.

    Article  PubMed  Google Scholar 

  41. Manal, K., and T. S. Buchanan. Subject-specific estimates of tendon slack length: a numerical method. J. Appl. Biomech. 20(2):195–203, 2004.

    Article  Google Scholar 

  42. Riemann, B. L., R. G. DeMont, K. Ryu, and S. M. Lephart. The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J. Athl. Train. 36(4):369, 2001.

    PubMed  PubMed Central  Google Scholar 

  43. D’Agostino, P., B. Dourthe, F. Kerkhof, G. H. Van Lenthe, F. Stockmans, and E. E. Vereecke. In vivo biomechanical behavior of the trapeziometacarpal joint in healthy and osteoarthritic subjects. Clin. Biomech. 49:119–127, 2017.

    Article  Google Scholar 

  44. Knutson, J. S., K. L. Kilgore, J. M. Mansour, and P. E. Crago. Intrinsic and extrinsic contributions to the passive moment at the metacarpophalangeal joint. J. Biomech. 33(12):1675–1681, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors would like to thank the Khorasan Razavi Forensic Medicine Center for its assistance in conducting the cadaver experiments.

Funding

This work was financially supported by the Research Council of Mashhad University of Medical Sciences [research project number 981843], the National Institute for Medical Research and Development (NIMAD) [No: 4001155], and Iran National Science Foundation (INSF) [No: 4002792].

Author information

Authors and Affiliations

Authors

Contributions

HH, SAY, AM, and AA contributed to the study conception, design, and methodology. Material preparation, data collection and analysis, and original draft preparation were performed by HH. SAY and AM supervised the research. AM and AA acquired the funding. SAY and NJ performed manuscript review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seyed Abdolmajid Yousefsani.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest concerning the contents of this article.

Ethical Approval and Consent to Participate

Ethical approval for this study was obtained from the Research Ethics Committee of Mashhad University of Medical Sciences, Mashhad, Iran (approval No: IR.MUMS.REC.1399.633). This research was conducted in full compliance with the codes of ethical conduct from the 1964 Declaration of Helsinki.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafiz, H., Yousefsani, S.A., Moradi, A. et al. Contribution of Soft Tissue Passive Forces in Thumb Carpometacarpal Joint Distraction. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03492-2

Keywords

Navigation