Skip to main content

Advertisement

Log in

Central Artery Hemodynamics in Angiotensin II-Induced Hypertension and Effects of Anesthesia

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Systemic hypertension is a strong risk factor for cardiovascular, neurovascular, and renovascular diseases. Central artery stiffness is both an initiator and indicator of hypertension, thus revealing a critical relationship between the wall mechanics and hemodynamics. Mice have emerged as a critical animal model for studying effects of hypertension and much has been learned. Regardless of the specific mouse model, data on changes in cardiac function and hemodynamics are necessarily measured under anesthesia. Here, we present a new experimental-computational workflow to estimate awake cardiovascular conditions from anesthetized data, which was then used to quantify effects of chronic angiotensin II-induced hypertension relative to normotension in wild-type mice. We found that isoflurane anesthesia had a greater impact on depressing hemodynamics in angiotensin II-infused mice than in controls, which led to unexpected results when comparing anesthetized results between the two groups of mice. Through comparison of the awake simulations, however, in vivo relevant effects of angiotensin II-infusion on global and regional vascular structure, properties, and hemodynamics were found to be qualitatively consistent with expectations. Specifically, we found an increased in vivo vascular stiffness in the descending thoracic aorta and suprarenal abdominal aorta, leading to increases in pulse pressure in the distal aorta. These insights allow characterization of the impact of regionally varying vascular remodeling on hemodynamics and mouse-to-mouse variations due to induced hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alhakak, A. S., J. R. Teerlink, J. Lindenfeld, M. Böhm, G. M. C. Rosano, and T. Biering-Sørensen. The significance of left ventricular ejection time in heart failure with reduced ejection fraction. Eur. J. Heart Fail. 23:541–551, 2021. https://doi.org/10.1002/ejhf.2125.

    Article  PubMed  Google Scholar 

  2. Arthurs, C. J., R. Khlebnikov, A. Melville, M. Marčan, A. Gomez, D. Dillon-Murphy, F. Cuomo, M. Silva Vieira, J. Schollenberger, S. R. Lynch, C. Tossas-Betancourt, K. Iyer, S. Hopper, E. Livingston, P. Youssefi, A. Noorani, S. Ben Ahmed, F. J. H. Nauta, T. M. J. van Bakel, and C. A. Figueroa. CRIMSON: an open-source software framework for cardiovascular integrated modelling and simulation. PLoS Comput. Biol.17(5):e1008881, 2021. https://doi.org/10.1371/journal.pcbi.1008881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aslanidou, L., B. Trachet, P. Reymond, R. A. Fraga-Silva, P. Segers, and N. Stergiopulos. A 1D model of the arterial circulation in mice. ALTEX. 33(1):13–28, 2016. https://doi.org/10.14573/ALTEX.1507071.

    Article  PubMed  Google Scholar 

  4. Baek, S., R. L. Gleason, K. R. Rajagopal, and J. D. Humphrey. Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196(31–32):3070–3078, 2007. https://doi.org/10.1016/j.cma.2006.06.018.

    Article  MathSciNet  ADS  Google Scholar 

  5. Bersi, M. R., V. A. Acosta Santamaría, K. Marback, P. Di Achille, E. H. Phillips, C. J. Goergen, J. D. Humphrey, and S. Avril. Multimodality imaging-based characterization of regional material properties in a murine model of aortic dissection. Sci. Rep. 10(1):1–23, 2020. https://doi.org/10.1038/s41598-020-65624-7.

    Article  CAS  Google Scholar 

  6. Bersi, M. R., R. Khosravi, A. J. Wujciak, D. G. Harrison, and J. D. Humphrey. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J. R. Soc. Interface. 14(136):20170327, 2017. https://doi.org/10.1098/rsif.2017.0327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Charlson, M. E., C. R. MacKenzie, J. P. Gold, K. L. Ales, M. Topkins, and G. Tom Shires. Preoperative characteristics predicting intraoperative hypotension and hypertension among hypertensives and diabetics undergoing noncardiac surgery. Ann. Surg. 212(1):66, 1990. https://doi.org/10.1097/00000658-199007000-00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Constantinides, C., and K. Murphy. Molecular and Integrative physiological effects of isoflurane anesthesia: the paradigm of cardiovascular studies in rodents using magnetic resonance imaging. Front. Cardiovasc. Med. 3:23, 2016. https://doi.org/10.3389/FCVM.2016.00023/BIBTEX.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Cuomo, F., J. Ferruzzi, P. Agarwal, C. Li, Z. W. Zhuang, J. D. Humphrey, and C. Alberto Figueroa. Sex-dependent differences in central artery haemodynamics in normal and fibulin-5 deficient mice: implications for ageing. Proc. R. Soc. A. 475(2221):20180076, 2019. https://doi.org/10.1098/rspa.2018.0076.

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  10. Cuomo, F., J. Ferruzzi, J. D. Humphrey, and C. A. Figueroa. An experimental-computational study of catheter induced alterations in pulse wave velocity in anesthetized mice. Ann. Biomed. Eng. 43(7):1555–1570, 2015. https://doi.org/10.1007/s10439-015-1272-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ferruzzi, J., P. . Di. Achille, G. Tellides, and J. D. Humphrey. Combining in vivo and in vitro biomechanical data reveals key roles of perivascular tethering in central artery function. PLoS ONE. 13(9):1–21, 2018. https://doi.org/10.1371/journal.pone.0201379.

    Article  CAS  Google Scholar 

  12. Ferruzzi, J., M. R. Bersi, and J. D. Humphrey. Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann. Biomed. Eng. 41(7):1311–1330, 2013. https://doi.org/10.1007/s10439-013-0799-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferruzzi, J., M. R. Bersi, S. Uman, H. Yanagisawa, and J. D. Humphrey. Decreased elastic energy storage, not increased material stiffness, characterizes central artery dysfunction in fibulin-5 deficiency independent of sex. J. Biomech. Eng. 137(3):1–14, 2015. https://doi.org/10.1115/1.4029431.

    Article  Google Scholar 

  14. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706, 2006. https://doi.org/10.1016/j.cma.2005.11.011.

    Article  MathSciNet  ADS  Google Scholar 

  15. Fink, G. D. Does tail-cuff plethysmography provide a reliable estimate of central blood pressure in mice? J. Am. Heart Assoc.6(6):e006554, 2017. https://doi.org/10.1161/JAHA.117.006554.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126(6):787–795, 2004. https://doi.org/10.1115/1.1824130.

    Article  CAS  PubMed  Google Scholar 

  17. Hoppe, P., C. Burfeindt, P. C. Reese, L. Briesenick, M. Flick, K. Kouz, H. Pinnschmidt, A. Hapfelmeier, D. I. Sessler, and B. Saugel. Chronic arterial hypertension and nocturnal non-dipping predict postinduction and intraoperative hypotension: a secondary analysis of a prospective study. J. Clin. Anesth.79:110715, 2022. https://doi.org/10.1016/J.JCLINANE.2022.110715.

    Article  PubMed  Google Scholar 

  18. Hopper, S. E., F. Cuomo, J. Ferruzzi, N. S. Burris, S. Roccabianca, J. D. Humphrey, and C. A. Figueroa. Comparative study of human and murine aortic biomechanics and hemodynamics in vascular aging. Front. Physiol. 12:1889, 2021. https://doi.org/10.3389/FPHYS.2021.746796/BIBTEX.

    Article  Google Scholar 

  19. Howell, S. J., J. W. Sear, and P. Föex. Hypertension, hypertensive heart disease and perioperative cardiac risk. Br. J. Anaesth. 92(4):570–583, 2004. https://doi.org/10.1093/BJA/AEH091.

    Article  CAS  PubMed  Google Scholar 

  20. Humphrey, J. D. Mechanisms of arterial remodeling in hypertension. Hypertension. 52(2):195–200, 2008. https://doi.org/10.1161/HYPERTENSIONAHA.107.103440.

    Article  CAS  PubMed  Google Scholar 

  21. Humphrey, J. D., D. G. Harrison, C. A. Figueroa, P. Lacolley, and S. Laurent. Central artery stiffness in hypertension and aging a problem with cause and consequence. Circ. Res. 118(3):379–381, 2016. https://doi.org/10.1161/circresaha.115.307722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ioannou, C. V., N. Stergiopulos, E. Georgakarakos, E. Chatzimichali, A. N. Katsamouris, and D. R. Morel. Effects of isoflurane anesthesia on aortic compliance and systemic hemodynamics in compliant and noncompliant aortas. J. Cardiothorac. Vasc. Anesth. 27(6):1282–1288, 2013. https://doi.org/10.1053/J.JVCA.2013.04.015.

    Article  CAS  PubMed  Google Scholar 

  23. Irons, L., M. Latorre, and J. D. Humphrey. From transcript to tissue: multiscale modeling from cell signaling to matrix remodeling. Ann. Biomed. Eng. 49(7):1701–1715, 2021. https://doi.org/10.1007/S10439-020-02713-8/FIGURES/8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ishikawa, A., K. Ogawa, Y. Tokinaga, N. Uematsu, K. Mizumoto, and Y. Hatano. The mechanism behind the inhibitory effect of isoflurane on angiotensin II-induced vascular contraction is different from that of sevoflurane. Anesth. Analgesia. 105(1):97–102, 2007. https://doi.org/10.1213/01.ANE.0000265851.37923.EC.

    Article  CAS  Google Scholar 

  25. Jung, S., P. I. Zimin, C. B. Woods, E. B. Kayser, D. Haddad, C. R. Reczek, K. Nakamura, J. M. Ramirez, M. M. Sedensky, and P. G. Morgan. Isoflurane inhibition of endocytosis is an anesthetic mechanism of action. Curr. Biol. 32(14):3016–3032, 2022. https://doi.org/10.1016/J.CUB.2022.05.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korneva, A., and J. D. Humphrey. Maladaptive aortic remodeling in hypertension associates with dysfunctional smooth muscle contractility. Am. J. Physiol.-Heart Circ. Physiol. 316(2):H265–H278, 2019. https://doi.org/10.1152/AJPHEART.00503.2017.

    Article  CAS  PubMed  Google Scholar 

  27. Laurent, S., and P. Boutouyrie. The structural factor of hypertension. Circ. Res. 116(6):1007–1021, 2015. https://doi.org/10.1161/CIRCRESAHA.116.303596.

    Article  CAS  PubMed  Google Scholar 

  28. Lerman, L. O., T. W. Kurtz, R. M. Touyz, D. H. Ellison, A. R. Chade, S. D. Crowley, D. L. Mattson, J. J. Mullins, J. Osborn, A. Eirin, J. F. Reckelhoff, C. Iadecola, and T. M. Coffman. Animal models of hypertension: a scientific statement from the american heart association. Hypertension. 73(6):e87–e120, 2019. https://doi.org/10.1161/HYP.0000000000000090.

    Article  CAS  PubMed  Google Scholar 

  29. Low, L. A., L. C. Bauer, and B. A. Klaunberg. Comparing the effects of isoflurane and alpha chloralose upon mouse physiology. PLoS ONE.11(5):e0154936, 2016. https://doi.org/10.1371/JOURNAL.PONE.0154936.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lu, H., D. L. Rateri, D. Bruemmer, L. A. Cassis, and A. Daugherty. Involvement of the renin–angiotensin system in abdominal and thoracic aortic aneurysms. Clin. Sci. 123(9):531–543, 2012. https://doi.org/10.1042/CS20120097.

    Article  CAS  Google Scholar 

  31. Moireau, P., N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. A. Taylor, and J.-F. Gerbeau. External tissue support and fluid-structure simulation in blood flows. Biomech. Model. Mechanobiol. 11:1–18, 2012. https://doi.org/10.1007/s10237-011-0289-z.

    Article  CAS  PubMed  Google Scholar 

  32. Navarro, K. L., M. Huss, J. C. Smith, P. Sharp, J. O. Marx, and C. Pacharinsak. Mouse anesthesia: the art and science. ILAR J. 62(1–2):238–273, 2021. https://doi.org/10.1093/ILAR/ILAB016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Phillips, E. H., P. Di Achille, M. R. Bersi, J. D. Humphrey, and C. J. Goergen. Multi-modality imaging enables detailed hemodynamic simulations in dissecting aneurysms in mice. IEEE Trans. Med. Imaging. 36(6):1297–1305, 2017. https://doi.org/10.1109/TMI.2017.2664799.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sahni, O., J. Müller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655, 2006. https://doi.org/10.1016/J.CMA.2005.10.018.

    Article  MathSciNet  ADS  Google Scholar 

  35. Samain, E., H. Bouillier, C. Rucker-Martin, J. X. Mazoit, J. Marty, J. F. Renaud, and G. Dagher. Isoflurane alters angiotensin II–induced Ca2+mobilization in aortic smooth muscle cells from hypertensive ratsimplication of cytoskeleton. Anesthesiology. 97(3):642–651, 2002. https://doi.org/10.1097/00000542-200209000-00019.

    Article  CAS  PubMed  Google Scholar 

  36. Seyde, W. C., and D. E. Longnecker. Anesthetic influences on regional hemodynamics in normal and hemorrhaged rats. Anesthesiology. 61(6):686–698, 1984. https://doi.org/10.1097/00000542-198412000-00010.

    Article  CAS  PubMed  Google Scholar 

  37. Simon, A. C., M. E. Safar, J. A. Levenson, G. M. London, B. I. Levy, N. P. Chau, M. E. Safar, and J. A. Levenson. An evaluation of large arteries compliance in man. Am. J. Physiol.-Heart Circ. Physiol. 237(5):H550–H554, 1979.

    Article  CAS  Google Scholar 

  38. Sparks, M. A., S. D. Crowley, S. B. Gurley, M. Mirotsou, and T. M. Coffman. Classical Renin-Angiotensin system in kidney physiology. Compr. Physiol. 4(3):1201–1228, 2014. https://doi.org/10.1002/CPHY.C130040.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Swaney, J. S. Impact of anesthesia on cardiac function during echocardiography in mice. Am. J. Physiol. Heart Circ. Physiol. 282(6):H2134–H2140, 2002. https://doi.org/10.1152/ajpheart.00845.2001.

    Article  PubMed  Google Scholar 

  40. Takuma, S., K. Suehiro, C. Cardinale, T. Hozumi, H. Yano, J. Shimizu, S. Mullis-Jansson, R. Sciacca, J. Wang, D. Burkhoff, M. R. di Tullio, and S. Homma. Anesthetic inhibition in ischemic and nonischemic murine heart: comparison with conscious echocardiographic approach. Am. J. Physiol.-Heart Circ. Physiol. 280(5):H2364–H2370, 2001. https://doi.org/10.1152/AJPHEART.2001.280.5.H2364/ASSET/IMAGES/LARGE/H40510763003.JPEG.

    Article  CAS  PubMed  Google Scholar 

  41. Tan, T. P., X. M. Gao, M. Krawczyszyn, X. Feng, H. Kiriazis, A. M. Dart, and X. J. Du. Assessment of cardiac function by echocardiography in conscious and anesthetized mice: importance of the autonomic nervous system and disease state. J. Cardiovasc. Pharmacol. 42(2):182–190, 2003. https://doi.org/10.1097/00005344-200308000-00005.

    Article  CAS  PubMed  Google Scholar 

  42. Trachet, B., J. Bols, J. Degroote, B. Verhegghe, N. Stergiopulos, J. Vierendeels, and P. Segers. An animal-specific FSI model of the abdominal aorta in anesthetized mice. Ann. Biomed. Eng. 43(6):1298–1309, 2015. https://doi.org/10.1007/s10439-015-1310-y.

    Article  PubMed  Google Scholar 

  43. Ullman, J., R. Härgestam, S. Lindahl, S. H. H. Chan, S. Eriksson, and M. Rundgren. Circulatory effects of angiotensin II during anaesthesia, evaluated by real-time spectral analysis. Acta Anaesth. Scand. 47(5):532–540, 2003. https://doi.org/10.1034/J.1399-6576.2003.00114.X.

    Article  CAS  PubMed  Google Scholar 

  44. Weiss, D., A. S. Long, G. Tellides, S. Avril, J. D. Humphrey, and M. R. Bersi. Evolving mural defects, dilatation, and biomechanical dysfunction in angiotensin II-induced thoracic aortopathies. Arteriosclerosis Thromb. Vasc. Biol. 42(8):973–986, 2022. https://doi.org/10.1161/ATVBAHA.122.317394.

    Article  CAS  Google Scholar 

  45. Wilde, E., A. A. Aubdool, P. Thakore, L. Baldissera, K. M. Alawi, J. Keeble, M. Nandi, and S. D. Brain. Tail-cuff technique and its influence on central blood pressure in the mouse. J. Am. Heart Assoc.6(6):e005204, 2017. https://doi.org/10.1161/JAHA.116.005204.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu, J., S. R. Thabet, A. Kirabo, D. W. Trott, M. A. Saleh, L. Xiao, M. S. Madhur, W. Chen, and D. G. Harrison. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ. Res. 114(4):616–625, 2014. https://doi.org/10.1161/CIRCRESAHA.114.302157.

    Article  CAS  PubMed  Google Scholar 

  47. Xiao, N., J. Alastruey, and C. Alberto Figueroa. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Methods Biomed. Eng. 30(2):204–231, 2014. https://doi.org/10.1002/cnm.2598.

    Article  MathSciNet  Google Scholar 

  48. Yu, J., K. Ogawa, Y. Tokinaga, S. Iwahashi, and Y. Hatano. The vascular relaxing effects of sevoflurane and isoflurane are more important in hypertensive than in normotensive rats. Can. J. Anesth. 51(10):979–985, 2014. https://doi.org/10.1007/BF03018483.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by NIH Grants R01 HL105297 and R01 HL155105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Humphrey.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 991 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopper, S.E., Weiss, D., Mikush, N. et al. Central Artery Hemodynamics in Angiotensin II-Induced Hypertension and Effects of Anesthesia. Ann Biomed Eng 52, 1051–1066 (2024). https://doi.org/10.1007/s10439-024-03440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-024-03440-0

Keywords

Navigation