Skip to main content

Advertisement

Log in

Advanced Visualization Engineering for Vision Disorders: A Clinically Focused Guide to Current Technology and Future Applications

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Head-mounted visualization technology, often in the form of virtual, augmented, and mixed reality (VAMR), has revolutionized how visual disorders may be approached clinically. In this manuscript, we review the available literature on VAMR for visual disorders and provide a clinically oriented guide to how VAMR technology has been deployed for visual impairments. The chief areas of clinical investigation with VAMR are divided include (1) vision assessment, (2) vision simulation, and (3) vision rehabilitation. We discuss in-depth the current literature of these areas in VAMR and upcoming/future applications to combat the detrimental impact of visual impairment worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alawa, K. A., R. P. Nolan, E. Han, A. Arboleda, H. Durkee, M. S. Sayed, M. C. Aguilar, and R. K. Lee. Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br. J. Ophthalmol. 105:440–444, 2021.

    Article  PubMed  Google Scholar 

  2. Aleman, T. S., A. J. Miller, K. H. Maguire, E. M. Aleman, L. W. Serrano, K. B. O’Connor, E. C. Bedoukian, B. P. Leroy, A. M. Maguire, and J. Bennett. A virtual reality orientation and mobility test for inherited retinal degenerations: testing a proof-of-concept after gene therapy. OPTH. 15:939–952, 2021.

    Article  Google Scholar 

  3. Alexander, D. J., C. R. Gibson, D. R. Hamilton, S. M. C. Lee, T. H. Mader, C. Otto, C. M. Oubre, A. F. Pass, S. H. Platts, J. M. Scott, S. M. Smith, M. B. Stenger, C. M. Westby, and S. B. Zanello. Previous Authors (July 2012).

  4. Almutleb, E. S., and S. E. Hassan. The effect of simulated central field loss on street-crossing decision-making in young adult pedestrians. Optom Vis Sci. 97:229–238, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Altangerel, U., H. S. Nallamshetty, T. Uhler, J. Fontanarosa, W. C. Steinmann, J. M. Almodin, B. H. Chen, and J. D. Henderer. Knowledge about glaucoma and barriers to follow-up care in a community glaucoma screening program. Can. J. Ophthalmol. 44:66–69, 2009.

    Article  PubMed  Google Scholar 

  6. Anik, A. A., B. A. Xavier, J. Hansmann, E. Ansong, J. Chen, L. Zhao, and E. Michals. Accuracy and reproducibility of linear and angular measurements in virtual reality: a validation study. J. Digit. Imaging. 33:111–120, 2020.

    Article  PubMed  Google Scholar 

  7. Aniruddha, P., N. Zaman, A. Tavakkoli, and S. Zuckerbrod. A parametric perceptual deficit modeling and diagnostics framework for retina damage using mixed reality. In: Advances in Visual Computing: 14th International Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV, USA. 11845:258–269, 2019.

    Google Scholar 

  8. Arvind, H., A. Klistorner, S. Graham, J. Grigg, I. Goldberg, A. Klistorner, and F. A. Billson. Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials. Invest. Ophthalmol. Vis. Sci. 48:4590–4596, 2007.

    Article  PubMed  Google Scholar 

  9. Ates, H. C., A. Fiannaca, and E. Folmer. Immersive simulation of visual impairments using a wearable see-through display. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 225–228, 2015. https://doi.org/10.1145/2677199.2680551.

  10. Azuma, R. T. A survey of augmented reality. Presence. 6:355–385, 1997.

    Article  Google Scholar 

  11. Backus, B. T., T. Tran, and J. Blaha. Clinical use of the Vivid Vision system to treat disorders of binocular vision. 2017.

  12. Barrett, P. M., R. Komatireddy, S. Haaser, S. Topol, J. Sheard, J. Encinas, A. J. Fought, and E. J. Topol. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127(95):e11-17, 2014.

    Google Scholar 

  13. Bennett, C. R., P. J. Bex, C. M. Bauer, and L. B. Merabet. The assessment of visual function and functional vision. Semin. Pediatr. Neurol. 31:30–40, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Blakemore, C., and B. Julesz. Stereoscopic depth aftereffect produced without monocular cues. Science. 171:286–288, 1971.

    Article  CAS  PubMed  Google Scholar 

  15. Bohil, C. J., B. Alicea, and F. A. Biocca. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12:752–762, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Bohr, I., and J. C. A. Read. Stereoacuity with Frisby and revised FD2 stereo tests. PLoS ONE.8:e82999, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bookwala, J., and B. Lawson. Poor vision, functioning, and depressive symptoms: a test of the activity restriction model. Gerontologist. 51:798–808, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bramley, T., P. Peeples, J. G. Walt, M. Juhasz, and J. E. Hansen. Impact of vision loss on costs and outcomes in medicare beneficiaries with glaucoma. Arch. Ophthalmol. 126:849–856, 2008.

    Article  PubMed  Google Scholar 

  19. Brown, G. C., M. M. Brown, and S. Sharma. Difference between ophthalmologists’ and patients’ perceptions of quality of life associated with age-related macular degeneration. Can. J. Ophthalmol. 35:127–133, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Brown, R. L., and A. E. Barrett. Visual impairment and quality of life among older adults: an examination of explanations for the relationship. J. Gerontol. B. 66:364–373, 2011.

    Article  Google Scholar 

  21. Bruun-Jensen, J. Visual field screening with a laptop computer system. Optometry. 82:519–527, 2011.

    Article  PubMed  Google Scholar 

  22. Capri, J., H. McLeod, L. V. Messner, A. S. Hariprasad, and D. Leong. Color contrast sensitivity in age-related macular degeneration (AMD). Investig. Ophthalmol. Vis. Sci. 59:2418, 2018.

    Google Scholar 

  23. Cheung, S.-H., and G. E. Legge. Functional and cortical adaptations to central vision loss. Vis. Neurosci. 22:187–201, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cholewiak, S. A., G. D. Love, P. P. Srinivasan, R. Ng, and M. S. Banks. Chromablur: rendering chromatic eye aberration improves accommodation and realism. ACM Trans. Graph. 36:210:1-210:12, 2017.

    Article  Google Scholar 

  25. Coco-Martin, M. B., D. P. Piñero, L. Leal-Vega, C. J. Hernández-Rodríguez, J. Adiego, A. Molina-Martín, D. de Fez, and J. F. Arenillas. The potential of virtual reality for inducing neuroplasticity in children with amblyopia. J. Ophthalmol. 2020:7067846, 2020.

    PubMed  PubMed Central  Google Scholar 

  26. Colenbrander, A. Aspects of vision loss—visual functions and functional vision. Vis. Impair. Res. 5:115–136, 2003.

    Article  Google Scholar 

  27. Corn, A. L., and J. N. Erin. Foundations of Low Vision: Clinical and Functional Perspectives. New York: American Foundation for the Blind, 2010.

    Google Scholar 

  28. Crabb, D. P. A view on glaucoma—are we seeing it clearly? Eye. 30:304–313, 2016.

    Article  CAS  PubMed  Google Scholar 

  29. Craddock, G., C. Doran, and L. McNutt. Transforming Our World Through Design, Diversity and Education: Proceedings of Universal Design and Higher Education in Transformation Congress 2018. IOS Press, Amsterdam, 2018.

  30. Creighton, R. H. Unity 3D game development by example : a seat-of-your-pants manual for building fun, groovy little games quickly. Packt Publishing, 2010. https://www.biblio.com/book/unity-3d-game-development-example-seat/d/1446159679.

  31. Crudden, A., L. W. McBroom, A. L. Skinner, and J. E. Moore. Comprehensive examination of barriers to employment among persons who are blind or visually impaired. Mississippi State University, Rehabilitation Research and Training Center on Blindness and Low Vision, 1998. https://eric.ed.gov/?id=ED419309.

  32. Culham, L. E., A. Chabra, and G. S. Rubin. Clinical performance of electronic, head-mounted, low-vision devices. Ophthalmic Physiol. Opt. 24:281–290, 2004.

    Article  PubMed  Google Scholar 

  33. Culham, L. E., A. Chabra, and G. S. Rubin. Users’ subjective evaluation of electronic vision enhancement systems. Ophthalmic Physiol. Opt. 29:138–149, 2009.

    Article  PubMed  Google Scholar 

  34. Damato, B., and C. Groenewald. Multifixation campimetry on line: a perimeter for the detection of visual field loss using the internet. Br. J. Ophthalmol. 87:1296–1298, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dascal, J., M. Reid, W. W. IsHak, B. Spiegel, J. Recacho, B. Rosen, and I. Danovitch. Virtual reality and medical inpatients: a systematic review of randomized. Control. Trials. Innov. Clin. Neurosci. 14:14–21, 2017.

    Google Scholar 

  36. De Letter, J., A. All, L. De Marez, V. Avramelos, P. Lambert, and G. Van Wallendael. Exploratory study on user’s dynamic visual acuity and quality perception of impaired images. 2020. https://doi.org/10.48550/arXiv.2001.03542.

    Article  Google Scholar 

  37. Deemer, A. D., C. K. Bradley, N. C. Ross, D. M. Natale, R. Itthipanichpong, F. S. Werblin, and R. W. Massof. Low vision enhancement with head-mounted video display systems: are we there yet? Optom. Vis. Sci. 95:694–703, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Demmin, D. L., and S. M. Silverstein. Visual impairment and mental health: unmet needs and treatment options. Clin. Ophthalmol. 14:4229–4251, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dundon, N. M., C. Bertini, E. Làdavas, B. A. Sabel, and C. Gall. Visual rehabilitation: visual scanning, multisensory stimulation and vision restoration trainings. Front. Behav. Neurosci. 9:192, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eastgate, R. M., G. D. Griffiths, P. E. Waddingham, A. D. Moody, T. K. H. Butler, S. V. Cobb, I. F. Comaish, S. M. Haworth, R. M. Gregson, I. M. Ash, and S. M. Brown. Modified virtual reality technology for treatment of amblyopia. Eye (Lond). 20:370–374, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Edemekong, P. F., D. L. Bomgaars, S. Sukumaran, and C. Schoo. Activities of daily living. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022. http://www.ncbi.nlm.nih.gov/books/NBK470404/.

  42. Ellwein, L. B., V. Friedlin, A. M. McBean, and P. P. Lee. Use of eye care services among the 1991 Medicare population. Ophthalmology. 103:1732–1743, 1996.

    Article  CAS  PubMed  Google Scholar 

  43. Everingham, M. R., B. T. Thomas, and T. Troscianko. Head-mounted mobility aid for low vision using scene classification techniques. Int. J. Virtual Real. 3:1–10, 1998.

    Article  Google Scholar 

  44. Feng, X. LCD motion-blur analysis, perception, and reduction using synchronized backlight flashing. SPIE. 6057:213–226, 2006.

    Google Scholar 

  45. Fong, D. S., M. Sharza, W. Chen, J. F. Paschal, R. G. Ariyasu, and P. P. Lee. Vision loss among diabetics in a group model Health Maintenance Organization (HMO). Am. J. Ophthalmol. 133:236–241, 2002.

    Article  PubMed  Google Scholar 

  46. Bourne, R., J. D. Steinmetz, and S. Flaxman. GBD 2019 blindness and vision impairment collaborators and vision loss expert group of the global burden of disease study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob. Health. 9:e130–e143, 2021.

    Article  Google Scholar 

  47. Gensheimer, M. W. G., R. Mazzoli, C. M. E. Reynolds, J. Pasternak, C. W. Kim, C. E. Chou, C. Cousineau-Krieger, M. J. Corsini, M. L. L. Groves, L. M. Colyer, C. D. K. Carlton, M. G. Legault, C. K. Miller, and L. C. J. Zimmerman. Eye trauma: initial care (CPG ID:03). Jt. Trauma Syst. Clin. Pract. Guidel.

  48. Georgiadis, K., F. Kalaganis, P. Migkotzidis, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris. A computer vision system supporting blind people—the supermarket case. In: Computer Vision Systems: 12th International Conference, ICVS 2019. 2019. https://doi.org/10.1007/978-3-030-34995-0_28.

    Article  Google Scholar 

  49. Gopal, S. K. S., J. Kelkar, A. Kelkar, and A. Pandit. Simplified updates on the pathophysiology and recent developments in the treatment of amblyopia: a review. Indian J. Ophthalmol. 67:1392–1399, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Greenfield, J. A., M. Deiner, A. Nguyen, G. Wollstein, B. Damato, B. T. Backus, M. Wu, J. S. Schuman, and Y. Ou. Measurement reproducibility using Vivid Vision Perimetry: a virtual reality-based mobile platform. Investig. Ophthalmol. Vis. Sci. 61:4800, 2020.

    Google Scholar 

  51. Gusev, D. A., D. M. Whittinghill, and J. Yong. A simulator to study the effects of color and color blindness on motion sickness in virtual reality using head-mounted displays. In: Mobile and Wireless Technologies 2016. Springer, Berlin. 2016. https://doi.org/10.1007/978-981-10-1409-3_22.

    Article  Google Scholar 

  52. Heesterbeek, T. J., H. P. A. van der Aa, G. H. M. B. van Rens, J. W. R. Twisk, and R. M. A. van Nispen. The incidence and predictors of depressive and anxiety symptoms in older adults with vision impairment: a longitudinal prospective cohort study. Ophthalmic Physiol. Opt. 37:385–398, 2017.

    Article  PubMed  Google Scholar 

  53. Hodge, S., and F. Eccles. Loneliness, Social Isolation and Sight Loss. Lancaster: Lancaster University, 2013.

    Google Scholar 

  54. Holford, K. C., A. E. Jagodinsky, R. Saripalle, and P. McAllister. Leveraging virtual reality for vestibular testing: clinical outcomes from tests of dynamic visual acuity. J. Vestib. Res. 32:15–20, 2022.

    Article  PubMed  Google Scholar 

  55. Howard, M. C. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput. Hum. Behav. 70:317–327, 2017.

    Article  Google Scholar 

  56. Huang, M., J. Patel, and B. C. Patel. Optic Nerve Glioma. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022. http://www.ncbi.nlm.nih.gov/books/NBK557878/.

  57. Ianchulev, T., P. Pham, V. Makarov, B. Francis, and D. Minckler. Peristat: a computer-based perimetry self-test for cost-effective population screening of glaucoma. Curr. Eye Res. 30:1–6, 2005.

    Article  PubMed  Google Scholar 

  58. Jeganathan, V. S. E., A. Kumagai, H. Shergill, M. D. Fetters, S. E. Moroi, J. Gosbee, D. S. Kim, J. D. Weiland, and J. R. Ehrlich. Design of smart head-mounted display technology: a convergent mixed-methods study. J. Vis. Impair. Blindness. 116:629–643, 2022.

    Article  Google Scholar 

  59. Jin, B., Z. Ai, and M. Rasmussen. Simulation of eye disease in virtual reality. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2005. https://doi.org/10.1109/IEMBS.2005.1615631.

    Article  Google Scholar 

  60. Johnson, A., M. Allen, R. Pryzby, R. Wright, S. Robison, X. Scrimgeour, M. Zacharias, D. Hays, and K. Collins-Lee. Using health literacy principles to create a vision loss virtual reality (VR) app.

  61. Jones, P. R., and G. Ometto. Degraded reality: using VR/AR to simulate visual impairments. In: 2018 IEEE Workshop on Augmented and Virtual Realities for Good (VAR4Good). IEEE. 2018. https://doi.org/10.1109/VAR4GOOD.2018.8576885.

    Article  Google Scholar 

  62. Jones, P. R., T. Somoskeöy, H. Chow-Wing-Bom, and D. P. Crabb. Seeing other perspectives: evaluating the use of virtual and augmented reality to simulate visual impairments (OpenVisSim). NPJ Digit. Med. 3:1–9, 2020.

    Article  Google Scholar 

  63. Joo, W.-J., J. Kyoung, M. Esfandyarpour, S.-H. Lee, H. Koo, S. Song, Y.-N. Kwon, S. H. Song, J. C. Bae, A. Jo, M.-J. Kwon, S. H. Han, S.-H. Kim, S. Hwang, and M. L. Brongersma. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science. 370:459–463, 2020.

    Article  CAS  PubMed  Google Scholar 

  64. Katibeh, M., H. Ziaei, E. Panah, H.-R. Moein, S. Hosseini, M. Kalantarion, A. Eskandari, and M. Yaseri. Knowledge and awareness of age related eye diseases: a population-based survey. J. Ophthalmic Vis. Res. 9:223–231, 2014.

    PubMed  PubMed Central  Google Scholar 

  65. Kelly, S. A., Y. Pang, and S. Klemencic. Reliability of the CSV-1000 in adults and children. Optometry Vis. Sci. 89:1172, 2012.

    Article  Google Scholar 

  66. Kimura, T., C. Matsumoto, and H. Nomoto. Comparison of head-mounted perimeter (imo®) and humphrey field analyzer. Clin. Ophthalmol. 13:501–513, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Knight, R., and H. J. Griffiths. The effect of luminance on visual acuity with Fresnel prisms. Br. Ir. Orthopt. J. 8:29–32, 2011.

    Article  Google Scholar 

  68. Koenderink, J. J., and A. J. van Doorn. Representation of local geometry in the visual system. Biol. Cybern. 55:367–375, 1987.

    Article  CAS  PubMed  Google Scholar 

  69. Krösl, K., D. Bauer, M. Schwärzler, H. Fuchs, G. Suter, and M. Wimmer. A VR-based user study on the effects of vision impairments on recognition distances of escape-route signs in buildings. Vis Comput. 34:911–923, 2018.

    Article  Google Scholar 

  70. Krosl, K., C. Elvezio, M. Hurbe, S. Karst, S. Feiner, and M. Wimmer. XREye: simulating visual impairments in eye-tracked XR. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 830–831, 2020. https://doi.org/10.1109/VRW50115.2020.00266.

  71. Krösl, K., C. Elvezio, M. Hürbe, S. Karst, M. Wimmer, and S. Feiner. ICthroughVR: illuminating cataracts through virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 2019. https://doi.org/10.1109/VR.2019.8798239.

  72. Kuzmiene, L. Static perimetry. In: Biophysical Properties in Glaucoma: Diagnostic Technologies, edited by I. Januleviciene, and A. Harris. Cham: Springer, 2019, pp. 109–113. https://doi.org/10.1007/978-3-319-98198-7_15.

  73. Laffont, P.-Y., T. Martin, M. Gross, W. D. Tan, C. Lim, A. Au, and R. Wong. Rectifeye: a vision-correcting system for virtual reality. In: SIGGRAPH ASIA 2016 VR Showcase, 2016. https://doi.org/10.1145/2996376.2996382.

  74. Lampton, D. R., B. W. Knerr, S. L. Goldberg, J. P. Bliss, J. M. Moshell, and B. S. Blau. The virtual environment performance assessment battery (VEPAB): development and evaluation. Presence. 3:145–157, 1994.

    Article  Google Scholar 

  75. Lau, J. T. F., V. Lee, D. Fan, M. Lau, and J. Michon. Knowledge about cataract, glaucoma, and age related macular degeneration in the Hong Kong Chinese population. Br. J. Ophthalmol. 86:1080–1084, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lawrenson, J. G., E. Graham-Rowe, F. Lorencatto, J. Burr, C. Bunce, J. J. Francis, P. Aluko, S. Rice, L. Vale, T. Peto, J. Presseau, N. Ivers, and J. M. Grimshaw. Interventions to increase attendance for diabetic retinopathy screening. Cochrane Database Syst. Rev. 1:CD012054, 2018.

    PubMed  Google Scholar 

  77. Lee, A. G., T. H. Mader, C. R. Gibson, W. Tarver, P. Rabiei, R. F. Riascos, L. A. Galdamez, and T. Brunstetter. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Microgravity. 6:1–10, 2020.

    Google Scholar 

  78. Lee, H.-J., and S.-J. Kim. Effectiveness of binocularity-stimulating treatment in children with residual amblyopia following occlusion. BMC Ophthalmol. 18:253, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li, S. L., A. Reynaud, R. F. Hess, Y.-Z. Wang, R. M. Jost, S. E. Morale, A. De La Cruz, L. Dao, D. Stager, and E. E. Birch. Dichoptic movie viewing treats childhood amblyopia. J. AAPOS. 19:401–405, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Long, G. M., and D. F. Kearns. Visibility of text and icon highway signs under dynamic viewing conditions. Hum. Factors. 38:690–701, 1996.

    Article  Google Scholar 

  81. Lorenzini, M.-C., J. Jarry, and W. Wittich. The impact of using eSight eyewear on functional vision and oculo-motor control in low vision patients. Investig. Ophthalmol. Vis. Sci. 58:3267, 2017.

    Google Scholar 

  82. Loriaut, P., P. Loriaut, P. Boyer, P. Massin, and I. Cochereau. Visual impairment and hip fractures: a case-control study in elderly patients. Ophthalmic Res. 52:212–216, 2014.

    Article  PubMed  Google Scholar 

  83. Lotery, A., X. Xu, G. Zlatava, and J. Loftus. Burden of illness, visual impairment and health resource utilisation of patients with neovascular age-related macular degeneration: results from the UK cohort of a five-country cross-sectional study. Br. J. Ophthalmol. 91:1303–1307, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Luo, G., and E. Peli. Use of an augmented-vision device for visual search by patients with tunnel vision. Investig. Ophthalmol. Vis. Sci. 47:4152–4159, 2006.

    Article  Google Scholar 

  85. Lynch, K. A. Survey reveals myths and misconceptions abundant among hiring managers about the capabilities of people who are visually impaired. J. Vis. Impair. Blindness. 107:408–410, 2013.

    Article  Google Scholar 

  86. Maggio, M. G., G. Maresca, R. De Luca, M. C. Stagnitti, B. Porcari, M. C. Ferrera, F. Galletti, C. Casella, A. Manuli, and R. S. Calabrò. The growing use of virtual reality in cognitive rehabilitation: fact, fake or vision? A scoping review. J. Natl. Med. Assoc. 111:457–463, 2019.

    PubMed  Google Scholar 

  87. Mansouri, K., S. Orgül, F. Meier-Gibbons, and A. Mermoud. Awareness about glaucoma and related eye health attitudes in Switzerland: a survey of the general public. Ophthalmologica. 220:101–108, 2006.

    Article  PubMed  Google Scholar 

  88. Masalkhi, M., J. Ong, E. Waisberg, J. Berdahl, and A. G. Lee. Intraocular pressure during spaceflight and risk of glaucomatous damage in prolonged microgravity. Encyclopedia. 3:1187–1196, 2023.

    Article  Google Scholar 

  89. Masalkhi, M., J. Ong, E. Waisberg, and A. G. Lee. Chorioretinal folds in astronauts: risk of chorioretinal fold-related maculopathy and terrestrial staging of disease. Eye. 2023. https://doi.org/10.1038/s41433-023-02730-6.

    Article  PubMed  Google Scholar 

  90. Masalkhi, M., E. Waisberg, J. Ong, N. Zaman, P. Sarker, A. G. Lee, and A. Tavakkoli. Apple vision pro for ophthalmology and medicine. Ann. Biomed. Eng. 2023. https://doi.org/10.1007/s10439-023-03283-1.

    Article  PubMed  Google Scholar 

  91. Maxhall, M., A. Backman, K. Bodin, L. Hedman, B. Sondell, and G. Bucht. Responses to a stroke training simulator. A pilot study. Int. J. Disab. Hum. Dev. 4:245–250, 2005.

    Google Scholar 

  92. Maxwell, D., E. Oster, and S. Lynch. Evaluating the applicability of repurposed entertainment virtual reality devices for military training. MODSIM World. 25:1–10, 2018.

    Google Scholar 

  93. Mees, L., S. Upadhyaya, P. Kumar, S. Kotawala, S. Haran, S. Rajasekar, D. S. Friedman, and R. Venkatesh. Validation of a head-mounted virtual reality visual field screening device. J. Glaucoma. 29:86–91, 2020.

    Article  PubMed  Google Scholar 

  94. Moglia, A., V. Ferrari, L. Morelli, M. Ferrari, F. Mosca, and A. Cuschieri. A systematic review of virtual reality simulators for robot-assisted surgery. Eur. Urol. 69:1065–1080, 2016.

    Article  PubMed  Google Scholar 

  95. Moharrer, M., S. Wang, B. E. Dougherty, W. Cybis, B. R. Ott, J. D. Davis, and G. Luo. Evaluation of the driving safety of visually impaired bioptic drivers based on critical events in naturalistic driving. Transl. Vis. Sci. Technol. 9:14, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Montelongo, M., A. Gonzalez, F. Morgenstern, S. P. Donahue, and S. L. Groth. A virtual reality-based automated perimeter, device, and pilot study. Transl. Vis. Sci. Technol. 10:20, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  97. MSD. Barriers to Employment Identified by Blind and Vision-Impaired Persons in New Zealand—Ministry of Social Development. https://www.msd.govt.nz/about-msd-and-our-work/publications-resources/journals-and-magazines/social-policy-journal/spj26/26-barriers-to-employment-identified-by-blind-and-vision-impaired-persons-pages173-185.html.

  98. Müller, A., J. E. Keeffe, and H. R. Taylor. Changes in eye care utilization following an eye health promotion campaign. Clin. Exp. Ophthalmol. 35:305–309, 2007.

    Article  PubMed  Google Scholar 

  99. Naidoo, K. S., T. R. Fricke, K. D. Frick, M. Jong, T. J. Naduvilath, S. Resnikoff, and P. Sankaridurg. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology. 126:338–346, 2019.

    Article  PubMed  Google Scholar 

  100. National Research Council (US) Committee on Vision. Emergent Techniques for Assessment of Visual Performance. Washington (DC): National Academies Press (US), 1985. http://www.ncbi.nlm.nih.gov/books/NBK219047/.

  101. Ong, J., A. Tavakkoli, N. Zaman, S. A. Kamran, E. Waisberg, N. Gautam, and A. G. Lee. Terrestrial health applications of visual assessment technology and machine learning in spaceflight associated neuro-ocular syndrome. NPJ Microgravity. 8:37, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ong, J., N. Zaman, S. A. Kamran, E. Waisberg, A. Tavakkoli, A. G. Lee, and M. Webster. A multi-modal visual assessment system for monitoring spaceflight associated neuro-ocular syndrome (SANS) during long duration spaceflight. J. Vis. 22:6, 2022.

    Article  Google Scholar 

  103. Ong, J., N. Zaman, E. Waisberg, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Head-mounted digital metamorphopsia suppression as a countermeasure for macular-related visual distortions for prolonged spaceflight missions and terrestrial health. Wearable Technol.3:e26, 2022.

    Article  Google Scholar 

  104. Owsley, C. Visual processing speed. Vis. Res. 90:52–56, 2013.

    Article  PubMed  Google Scholar 

  105. Palmer, S. E. Vision science: photons to phenomenology. Cambridge: The MIT Press, 1999.

    Google Scholar 

  106. Papakonstantinou, D., and K. Papadopoulos. The impact of information on employers’ attitudes towards employees with visual impairments. J. Vocat. Rehabil. 47:99–107, 2017.

    Article  Google Scholar 

  107. Parihar, J. K. S. Glaucoma: the ‘Black hole’ of irreversible blindness. Med. J. Armed Forces India. 72:3–4, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Park, H.-Y., H. Ryu, H.-Y. Kang, H. Lee, and J.-W. Kwon. Clinical and economic burden of visual impairment in an aging society of South Korea. Asia Pac. J. Public Health. 27:631–642, 2015.

    Article  PubMed  Google Scholar 

  109. Pelli, D. G. Crowding: a cortical constraint on object recognition. Curr. Opin. Neurobiol. 18:445–451, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pieramici, D. J., F. Heimann, R. Brassard, G. Barteselli, and S. Ranade. Virtual reality becomes a reality for ophthalmologic surgical clinical trials. Transl. Vis. Sci. Technol. 9:1, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Randall, D., H. Griffiths, G. Arblaster, A. Bjerre, and J. Fenner. Simulation of oscillopsia in virtual reality. Br. Ir. Orthopt. J. 14:45–49, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Reiss, F., A.-K. Meyrose, C. Otto, T. Lampert, F. Klasen, and U. Ravens-Sieberer. Socioeconomic status, stressful life situations and mental health problems in children and adolescents: results of the German BELLA cohort-study. PLoS ONE.14:e0213700, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rolland, J., and T. Hopkins. 1-A method of computational correction for optical distortion in head-mounted displays. 1993. https://www.semanticscholar.org/paper/1-A-Method-of-Computational-Correction-for-Optical-Rolland-Hopkins/6175f366325585b9feddaad383a2837b3fbaf99d.

  114. Rosenthal, B. P., and M. Fischer. Chapter 51—functional vision changes in the normal and aging eye. In: A Comprehensive Guide to Geriatric Rehabilitation (Third Edition), edited by T. L. Kauffman, R. Scott, J. O. Barr, and M. L. Moran. Oxford: Churchill Livingstone, 2014, pp. 381–391.https://doi.org/10.1016/B978-0-7020-4588-2.00051-6.

  115. Rubin, G. S., K. Bandeen-Roche, G.-H. Huang, B. Muñoz, O. D. Schein, L. P. Fried, and S. K. West. The association of multiple visual impairments with self-reported visual disability: SEE project. Investig. Ophthalmol. Vis. Sci. 42:64–72, 2001.

    CAS  Google Scholar 

  116. Ruia, S., and K. Tripathy. Humphrey visual field. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2023. http://www.ncbi.nlm.nih.gov/books/NBK585112/.

  117. Rus-Calafell, M., P. Garety, E. Sason, T. J. K. Craig, and L. R. Valmaggia. Virtual reality in the assessment and treatment of psychosis: a systematic review of its utility, acceptability and effectiveness. Psychol. Med. 48:362–391, 2018.

    Article  CAS  PubMed  Google Scholar 

  118. Salive, M. E., J. Guralnik, R. J. Glynn, W. Christen, R. B. Wallace, and A. M. Ostfeld. Association of visual impairment with mobility and physical function. J. Am. Geriatr. Soc. 42:287–292, 1994.

    Article  CAS  PubMed  Google Scholar 

  119. Sarker, P., J. Ong, N. Zaman, S. A. Kamran, E. Waisberg, P. Paladugu, A. G. Lee, and A. Tavakkoli. Extended reality quantification of pupil reactivity as a non-invasive assessment for the pathogenesis of spaceflight associated neuro-ocular syndrome: a technology validation study for astronaut health. Life Sci. Space Res. 38:79–86, 2023.

    Article  Google Scholar 

  120. Sarker, P., N. Zaman, J. Ong, P. Paladugu, M. Aldred, E. Waisberg, A. G. Lee, and A. Tavakkoli. Test-retest reliability of virtual reality devices in quantifying for relative afferent pupillary defect. Trans. Vis. Sci. Technol. 12:2, 2023.

    Article  Google Scholar 

  121. Saw, S.-M., G. Gazzard, D. Friedman, P. J. Foster, J. G. Devereux, M. L. Wong, and S. Seah. Awareness of glaucoma, and health beliefs of patients suffering primary acute angle closure. Br. J. Ophthalmol. 87:446–449, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sayed, A. M., M. Abdel-Mottaleb, R. Kashem, V. Roongpoovapatr, A. Elsawy, M. Abdel-Mottaleb, R. K. Parrish, and M. A. Shousha. Expansion of peripheral visual field with novel virtual reality digital spectacles. Am. J. Ophthalmol. 210:125–135, 2020.

    Article  PubMed  Google Scholar 

  123. Sayed, A. M., R. Kashem, M. Abdel-Mottaleb, V. Roongpoovapatr, T. K. Eleiwa, M. Abdel-Mottaleb, R. K. Parrish, and M. A. Shousha. Toward improving the mobility of patients with peripheral visual field defects with novel digital spectacles. Am. J. Ophthalmol. 210:136–145, 2020.

    Article  PubMed  Google Scholar 

  124. Scarfe, P., and A. Glennerster. Using high-fidelity virtual reality to study perception in freely moving observers. J. Vis. 15:3, 2015.

    Article  PubMed  Google Scholar 

  125. Schor, C. M. A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses. Optom. Vis. Sci. 69:258–269, 1992.

    Article  CAS  PubMed  Google Scholar 

  126. Scott, A. W., N. M. Bressler, S. Ffolkes, J. S. Wittenborn, and J. Jorkasky. Public attitudes about eye and vision health. JAMA Ophthalmol. 134:1111–1118, 2016.

    Article  PubMed  Google Scholar 

  127. Shen, T.-W., H.-Y. Hsu, and Y.-Z. Chen. Evaluation of visual acuity measurement based on the mobile virtual reality device. Math. Prob. Eng.2022:e1270565, 2022.

    Article  Google Scholar 

  128. Shickle, D., and M. Griffin. Why don’t older adults in England go to have their eyes examined? Ophthalmic Physiol. Opt. 34:38–45, 2014.

    Article  PubMed  Google Scholar 

  129. Shivakumar, F. OxSight uses augmented reality to aid the visually impaired, 2017. https://techcrunch.com/2017/02/16/oxsight-uses-augmented-reality-to-aide-the-visually-impaired/.

  130. Sircar, T., Z. Pradhan, A. Bopardikar, H. L. Rao, H. Agrawal, and V. N. Tiwari. Development and clinical validation of GearVision—a smartphone based head mounted perimeter. In: 2019 IEEE 16th India Council International Conference (INDICON). 2019. https://doi.org/10.1109/INDICON47234.2019.9030319.

    Article  Google Scholar 

  131. Sproule, D., R. F. Jacinto, S. Rundell, J. Williams, S. Perlmutter, and S. Arndt. Characterization of visual acuity and contrast sensitivity using head-mounted displays in a virtual environment: a pilot study. Proc. Hum. Factors Ergonom. Soc. Annu. Meet. 63:547–551, 2019.

    Article  Google Scholar 

  132. Stewart, C. E., A. R. Fielder, D. A. Stephens, and M. J. Moseley. Design of the monitored occlusion treatment of amblyopia study (MOTAS). Br J Ophthalmol. 86:915–919, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stock, S., C. Erler, and W. Stork. Realistic simulation of progressive vision diseases in virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology. 2018. https://doi.org/10.1145/3281505.3283395.

    Article  Google Scholar 

  134. Swenor, B. K., B. Muñoz, and S. K. West. A longitudinal study of the association between visual impairment and mobility performance in older adults: the salisbury eye evaluation study. Am. J. Epidemiol. 179:313–322, 2014.

    Article  PubMed  Google Scholar 

  135. Thevin, L., and T. Machulla. Three common misconceptions about visual impairments. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). 2020. https://doi.org/10.1109/VRW50115.2020.00113.

    Article  Google Scholar 

  136. Thompson, J. M. T., and J. M. Harris. Binocular vision: moving closer to reality. Philos. Trans. Soc. R. Lond. Ser. A. 362:2721–2739, 2004.

    Article  Google Scholar 

  137. Thonginnetra, O., V. C. Greenstein, D. Chu, J. M. Liebmann, R. Ritch, and D. C. Hood. Normal versus high tension glaucoma: a comparison of functional and structural defects. J. Glaucoma. 19:151–157, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tidow, G., K. D. Wühst, and H. de Marées. Dynamic Visual Acuity as a Performance-Influencing Factor in Sport. In: Training und Sport zur Prävention und Rehabilitation in der technisierten Umwelt/Training and Sport for Prevention and Rehabilitation in the Technicized Environment: Deutscher Sportärztekongreß Berlin, 27.–29. September 1984, edited by I.-W. Franz, H. Mellerowicz, and W. Noack. Berlin: Springer, 1985, pp. 353–358. https://doi.org/10.1007/978-3-642-70301-0_52.

  139. Tsapakis, S., D. Papaconstantinou, A. Diagourtas, S. Kandarakis, K. Droutsas, K. Andreanos, and D. Brouzas. Home-based visual field test for glaucoma screening comparison with Humphrey perimeter. Clin. Ophthalmol. 12:2597–2606, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Urwyler, P., N. Gruber, R. M. Müri, M. Jäger, R. Bieri, T. Nyffeler, U. P. Mosimann, and T. Nef. Age-dependent visual exploration during simulated day- and night driving on a motorway: a cross-sectional study. BMC Geriatr. 15:18, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lopez, V., C. Johnson, N. Rady, G. Mijares, M. K. Durbin, A. Nicklin, and M. A. Shousha. Contrast sensitivity application for augmented reality wearable device. IOVS. 63:721, 2022.

    Google Scholar 

  142. Vargas-Martin, F. Augmented-view for restricted visual field: multiple device implementations. Optom. Vis. Sci. 79(11):715–723, 2002.

    Article  PubMed  Google Scholar 

  143. Väyrynen, J., A. Colley, and J. Häkkilä. Head mounted display design tool for simulating visual disabilities. In: Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia. 2016. https://doi.org/10.1145/3012709.3012714.

    Article  Google Scholar 

  144. Velázquez, R., C. N. Sánchez, and E. E. Pissaloux. Visual impairment simulator based on the hadamard product. Electron. Notes Theor. Comput. Sci. 329:169–179, 2016.

    Article  Google Scholar 

  145. Versek, C., A. Rissmiller, A. Tran, M. Taya, K. Chowdhury, P. Bex, and S. Sridhar. Portable system for neuro-optical diagnostics using virtual reality display. Mil. Med. 184:584–592, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Vingrys, A. J., J. K. Healey, S. Liew, V. Saharinen, M. Tran, W. Wu, and G. Y. X. Kong. Validation of a tablet as a tangent perimeter. Transl. Vis. Sci. Technol. 5:3, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Waisberg, E., J. Ong, S. A. Kamran, N. Zaman, P. Paladugu, P. Sarker, A. Tavakkoli, and A. G. Lee. Further characterizing the physiological process of posterior globe flattening in spaceflight associated neuro-ocular syndrome with generative adversarial networks. J. Appl. Physiol. 134:150–151, 2023.

    Article  PubMed  Google Scholar 

  148. Waisberg, E., J. Ong, and A. G. Lee. Factors associated with optic disc edema development during spaceflight. JAMA Ophthalmol. 2023. https://doi.org/10.1001/jamaophthalmol.2023.0303.

    Article  PubMed  Google Scholar 

  149. Waisberg, E., J. Ong, and A. G. Lee. Space radiation and the potential for early cataract development. Eye (London, England) (accepted).

  150. Waisberg, E., J. Ong, M. Masalkhi, and A. G. Lee. Optic neuropathy in spaceflight-associated neuro-ocular syndrome (SANS). Ir. J. Med. Sci. 2023. https://doi.org/10.1007/s11845-023-03353-2.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Waisberg, E., J. Ong, M. Masalkhi, A. G. Lee, and J. Berdahl. Anatomical considerations for reducing ocular emergencies during spaceflight. Ir. J. Med. Sci. 2023. https://doi.org/10.1007/s11845-023-03407-5.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Waisberg, E., J. Ong, M. Masalkhi, N. Zaman, P. Sarker, A. G. Lee, and A. Tavakkoli. Apple Vision Pro and why extended reality will revolutionize the future of medicine. Ir. J. Med. Sci. 2023. https://doi.org/10.1007/s11845-023-03437-z.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Waisberg, E., J. Ong, M. Masalkhi, N. Zaman, P. Sarker, A. G. Lee, and A. Tavakkoli. Apple Vision Pro: the future of surgery with advances in virtual and augmented reality. Ir. J. Med. Sci. 2023. https://doi.org/10.1007/s11845-023-03457-9.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Waisberg, E., J. Ong, M. Masalkhi, N. Zaman, P. Sarker, A. G. Lee, and A. Tavakkoli. The future of ophthalmology and vision science with the Apple Vision Pro. Eye. 2023. https://doi.org/10.1038/s41433-023-02688-5.

    Article  PubMed  Google Scholar 

  155. Waisberg, E., J. Ong, M. Masalkhi, N. Zaman, P. Sarker, A. G. Lee, and A. Tavakkoli. Apple Vision Pro and the advancement of medical education with extended reality. Can. Med. Ed. J. 2023. https://doi.org/10.36834/cmej.77634.

    Article  Google Scholar 

  156. Waisberg, E., J. Ong, P. Paladugu, S. A. Kamran, N. Zaman, A. Tavakkoli, and A. G. Lee. Advances in machine learning to detect preventable causes of blindness. Eye. 2022. https://doi.org/10.1038/s41433-022-02354-2.

    Article  PubMed  Google Scholar 

  157. Waisberg, E., J. Ong, P. Paladugu, S. A. Kamran, N. Zaman, A. Tavakkoli, and A. G. Lee. Applying generative adversarial network techniques to portable ophthalmic imaging. Eye. 2022. https://doi.org/10.1038/s41433-022-02353-3.

    Article  PubMed  Google Scholar 

  158. Waisberg, E., J. Ong, P. Paladugu, N. Zaman, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Optimizing screening for preventable blindness with head-mounted visual assessment technology. J. Vis. Impair. Blindness. 116:579–581, 2022.

    Article  Google Scholar 

  159. Waisberg, E., J. Ong, N. Zaman, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Stroboscopic augmented reality as an approach to mitigate gravitational transition effects during interplanetary spaceflight. Int. J. Aviat. Aeronaut. Aerosp. 9:6, 2022.

    Google Scholar 

  160. Waisberg, E., J. Ong, N. Zaman, S. A. Kamran, A. G. Lee, and A. Tavakkoli. A non-invasive approach to monitor anemia during long-duration spaceflight with retinal fundus images and deep learning. Life Sci. Space Res. 33:69–71, 2022.

    Article  Google Scholar 

  161. Waisberg, E., J. Ong, N. Zaman, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Head-mounted dynamic visual acuity for g-transition effects during interplanetary spaceflight: technology development and results from an early validation study. Aerosp. Med. Hum. Perform. 93:800–805, 2022.

    Article  PubMed  Google Scholar 

  162. Waisberg, E., J. Ong, N. Zaman, S. A. Kamran, P. Sarker, A. Tavakkoli, and A. G. Lee. Extended reality for strabismus screening in developing countries. Eye. 2023. https://doi.org/10.1038/s41433-023-02649-y.

    Article  PubMed  Google Scholar 

  163. Waisberg, E., J. Ong, N. Zaman, P. Paladugu, S. A. Kamran, A. Tavakkoli, and A. G. Lee. The spaceflight contrast sensitivity hypothesis and its role to investigate the pathophysiology of spaceflight-associated neuro-ocular syndrome. Front. Ophthalmol. 3:1229748, 2023.

    Article  Google Scholar 

  164. Waisbourd, M., O. M. Ahmed, J. Newman, M. Sahu, D. Robinson, L. Siam, C. B. Reamer, T. Zhan, M. Goldstein, S. Kurtz, M. R. Moster, L. A. Hark, and L. J. Katz. The effect of an innovative vision simulator (OrCam) on quality of life in patients with glaucoma. J. Vis. Impair. Blindness. 113:332–340, 2019.

    Article  Google Scholar 

  165. Wang, S., M. Moharrer, V. Baliutaviciute, B. E. Dougherty, W. Cybis, A. R. Bowers, and G. Luo. Bioptic telescope use in naturalistic driving by people with visual impairment. Transl. Vis. Sci. Technol. 9:11, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Werfel, F., R. Wiche, J. Feitsch, and C. Geiger. Empathizing audiovisual sense impairments: interactive real-time illustration of diminished sense perception. In: Proceedings of the 7th Augmented Human International Conference. 2016. https://doi.org/10.1145/2875194.2875226.

    Article  Google Scholar 

  167. The SEE Project. West, S. K., G. S. Rubin, A. T. Broman, B. Muñoz, K. Bandeen-Roche, K. Turano, and for the SEE Project Team. How does visual impairment affect performance on tasks of everyday life? Arch. Ophthalmol. 120:774–780, 2002.

    Article  Google Scholar 

  168. Wittich, W., M.-C. Lorenzini, J. E. Goldstein, S. N. Markowitz, B. E. Patino, K. Lindeman, S. Braudway, S. A. Gartner, L. Godsay, A. Howson, M. Tolentino, T. Jayasundera, S. Reyes, and G. Dagnelie. eQUEST: the eSight quality of life and efficacy study. Investig. Ophthalmol. Vis. Sci. 58:4764, 2017.

    Google Scholar 

  169. Wolffe, K. E., and A. R. Candela. A qualitative analysis of employers’ experiences with visually impaired workers. J. Vis. Impair. Blindness. 96:622–634, 2002.

    Article  Google Scholar 

  170. Wood, J., A. Chaparro, T. Carberry, and B. S. Chu. Effect of simulated visual impairment on nighttime driving performance. Optom. Vis. Sci. 87:379–386, 2010.

    Article  PubMed  Google Scholar 

  171. Wroblewski, D., B. A. Francis, A. Sadun, G. Vakili, and V. Chopra. Testing of visual field with virtual reality goggles in manual and visual grasp modes. BioMed Res. Int.2014:e206082, 2014.

    Article  Google Scholar 

  172. Wu, H., D. H. Ashmead, H. Adams, and B. Bodenheimer. Using virtual reality to assess the street crossing behavior of pedestrians with simulated macular degeneration at a roundabout. Front. ICT. 5:27, 2018.

    Article  Google Scholar 

  173. Zaman, N., A. Tavakkoli, and S. Zuckerbrod. A mixed reality system for modeling perceptual deficit to correct neural errors and recover functional vision. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). 2020. https://doi.org/10.1109/VRW50115.2020.00055.

    Article  Google Scholar 

  174. Zao, J. K., Y.-Y. Chien, F.-C. Lin, Y.-T. Wang, M. Nakanishi, F. A. Medeiros, T.-P. Jung, and Y.-P. Huang. 37–4: invited paper: intelligent virtual-reality head-mounted displays with brain monitoring and visual function assessment. SID Symp. Dig. Tech. Pap. 49:475–478, 2018.

    Article  Google Scholar 

  175. Zhang, Q., Y. Guo, P.-Y. Laffont, T. Martin, and M. Gross. A virtual try-on system for prescription eyeglasses. IEEE Comput. Graph. Appl. 37:84–93, 2017.

    Article  PubMed  Google Scholar 

  176. Zhao, Y., E. Cutrell, C. Holz, M. R. Morris, E. Ofek, and A. D. Wilson. SeeingVR: a set of tools to make virtual reality more accessible to people with low vision. Proceedings of the 2019 CHI conference on human factors in computing systems. 2019. https://doi.org/10.1145/3290605.3300341.

  177. Zhao, Y., S. Szpiro, and S. Azenkot. ForeSee: a customizable head-mounted vision enhancement system for people with low vision. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, pp. 239–249, 2015. https://doi.org/10.1145/2700648.2809865.

  178. Zhao, Y., S. Szpiro, J. Knighten, and S. Azenkot. CueSee: exploring visual cues for people with low vision to facilitate a visual search task. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 73–84, 2016. https://doi.org/10.1145/2971648.2971730.

    Book  Google Scholar 

  179. Zhao, Y., S. Szpiro, L. Shi, and S. Azenkot. Designing and evaluating a customizable head-mounted vision enhancement system for people with low vision. ACM Trans. Access. Comput. 12:151–1546, 2019.

    Article  Google Scholar 

  180. Žiak, P., A. Holm, J. Halička, P. Mojžiš, and D. P. Piñero. Amblyopia treatment of adults with dichoptic training using the virtual reality oculus rift head mounted display: preliminary results. BMC Ophthalmol. 17(1):105, 2017. https://doi.org/10.1186/s12886-017-0501-8.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cloud-based augmented/virtual reality platform receives class I listing with FD, 2020. https://www.ophthalmologytimes.com/view/cloud-based-augmented-virtual-reality-platform-receives-class-i-listing-with-fda.

  182. Product Lineup | FOVE Official Website, 2021. https://fove-inc.com/product/, https://fove-inc.com/product/.

  183. FundamentalVR raises $20M to grow its surgical VR platform, 2022.https://www.auganix.org/fundamentalvr-announces-it-has-raised-20m-to-further-grow-its-vr-surgical-simulation-platform/.

  184. Vision impairment and blindnessat. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment.

  185. Oculus Rift S: PC-Powered VR Gaming Headset | Oculusat. https://www.oculus.com/rift-s/.

  186. SAMSUNG | Samsung UKat. https://www.samsung.com/ie/common/error/.

  187. Glass – Glassat. https://www.google.com/glass/start/.

  188. VIVE VR Headsets, Immersive Glasses & Equipment | United Statesat. https://www.vive.com/us/product/.

  189. Game Development and Simulation with Unreal Technology, Second Editionat. https://www.routledge.com/Game-Development-and-Simulation-with-Unreal-Technology-Second-Edition/Tavakkoli/p/book/9781138092198.

  190. Unreal Engine 5.1 Documentationat. https://docs.unrealengine.com/5.1/en-US/.

  191. Vision Assessment: Shaping Technology in 21st Century Societyat. https://doi.org/10.1007/978-3-642-59702-2.

  192. Effects of VR-Displays on Visual Acuity | TU Wien – Research Unit of Computer Graphicsat. https://www.cg.tuwien.ac.at/research/publications/2019/panfili-2019-VAVR/.

  193. Clinical Procedures in Primary Eye Care—5th Editionat. https://www.elsevier.com/books/clinical-procedures-in-primary-eye-care/elliott/978-0-7020-7789-0.

  194. VR headset—Varjo VR-3 | Highest resolution virtual reality | Varjoat. https://varjo.com/products/vr-3/.

  195. Full article: Visual Impairment and Mental Health: Unmet Needs and Treatment Optionsat. https://doi.org/10.2147/OPTH.S258783.

  196. Empath-D | Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Servicesat. https://doi.org/10.1145/3210240.3211108.

  197. Gordois, A., H. Cutler, L. Pezzullo, K. Gordon, A. Cruess, S. Winyard, W. Hamilton, and K. Chua. An estimation of the worldwide economic and health burden of visual impairment. Glob. Public Health. 7(5):465–481, 2012.

    Article  PubMed  Google Scholar 

  198. Panfili, L. Effects of VR-Displays on Visual Acuity. Vienna: Technische Universität Wien, 2019.

    Google Scholar 

  199. Ong, J., N. Zaman, E. Waisberg, S.A. Kamran, A.G. Lee, and A. Tavakkoli. Head-Mounted Digital Metamorphopsia Suppression as a Countermeasure for Macular-Related Visual Distortions for Prolonged Spaceflight Missions and Terrestrial Health. Cambridge: Cambridge University Press, 2022.

    Book  Google Scholar 

  200. Qiu, Q., D.A. Ramirez, S. Saleh, G.G. Fluet, H.D. Parikh, D. Kelly, and S.V. Adamovich. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. J. Neuroeng. Rehabil. 6:40, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Waddingham, P.Ε., S.V. Cobb, R.M. Eastgate, and R.M. Gregson. Virtual reality for interactive binocular treatment of amblyopia. Int. J. Disabil. Hum. Dev. 2011. https://doi.org/10.1515/IJDHD.2006.5.2.155.

    Article  Google Scholar 

  202. Vedamurthy, I., D. C. Knill, S. J. Huang, A. Yung, J. Ding, O. S. Kwon, D. Bavelier, and D. M. Levi. Recovering stereo vision by squashing virtual bugs in a virtual reality environment. Philos. Trans. R. Soc. Lond. B 371(1697):20150264, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Boon, M. Y., L. J. Asper, P. Chik, P. Alagiah, and M. Ryan. Treatment and compliance with virtual reality and anaglyph-based training programs for convergence insufficiency. Clin. Exp. Optom. 103(6):870–876, 2020.

    Article  PubMed  Google Scholar 

  204. Yaramothu, C., J. V. d’Antonio-Bertagnolli, E. M. Santos, P. C. Crincoli, J. V. Rajah, M. Scheiman, and T. L. Alvarez. Proceedings #37: Virtual Eye Rotation Vision Exercises (VERVE): A Virtual Reality Vision Therapy Platform with Eye Tracking. New York: Elsevier, 2019.

    Book  Google Scholar 

  205. Gopalakrishnan, S., C. E. S. Jacob, M. Kumar, V. Karunakaran, and R. Raman. Comparison of visual parameters between normal individuals and people with low vision in a virtual environment. Cyberpsychol. Behav. Soc. Netw. 23(3):171–178, 2020.

    Article  PubMed  Google Scholar 

  206. Saraiva, A. A., M. P. Barros, A. T. Nogueira, N. M. Fonseca Ferreira, and A. Valente. Virtual interactive environment for low-cost treatment of mechanical strabismus and amblyopia. Information 9(7), 175, 2020. https://doi.org/10.3390/info9070175.

  207. Greuter, S., R. Woodcock, L. Torre, A. Douglass, G. Sampson, L. Chong, J. Armitage, S. Backhouse. AmblyopiaVR: immersive game-based virtual reality system for the treatment of amblyopia. In: Proceedings of Australasian Computer Science Week (ACSW 2020). New York: ACM, pp 1–5, 2020.

  208. Peli, E., L. Luo, A. Bowers, and N. Rensing. Applications of augmented vision head-mounted systems in vision rehabilitation. J. Soc. Inf. Disp. 15(12):1037–1045, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Merino-Gracia, C., K. Lenc, M. Mirmehdi. A head-mounted device for recognizing text in natural scienes. Lect. Note. Comput. Sci, 2011. https://doi.org/10.1007/978-3-642-29364-1_3.

  210. Hicks, J. D., R. A. Flanagan, P. V. Petrov, A. D. Stoyen. Eyekon: augmented reality for battlefield soldiers. In: Published in: 27th Annual NASA Goddard/IEEE Software Engineering Workshop. Greenbelt: IEEE, 2013.

  211. Tanuwidjaja, E., D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, Chroma: a wearable augmented-reality solution for color blindness. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 799–810, 2014. https://doi.org/10.1145/2632048.2632091.

  212. Ruffieux, S, N. Ruffieux, R. Caldara, and D. Lalanne. i KnowU–exploring the potential of multimodal AR smart glasses for the decoding and rehabilitation of face processing in clinical populations. In: Human-Computer Interaction–INTERACT 2017: 16th IFIP TC 13 International Conference, Mumbai, India, September 25–29, 2017, Proceedings, Part III 16, pp. 423–432. New York: Springer, 2017. https://doi.org/10.1007/978-3-319-67687-6_28.

  213. Melillo, P., D. Riccio, L. Di Perna, G. S. Di Baja, M. De Nino, S. Rossi, F. Testa, F. Simonelli, and M. Frucci. Wearable improved vision system for color vision deficiency correction. IEEE J. Transl. Eng. Health Med. 5:1–7, 2017.

    Article  Google Scholar 

  214. Lorenzini, M. C. and W. Wittich. 19 virtual reality applications in the context of low-vision rehabilitation. Virtual Real. Health Rehabil. 2020. https://doi.org/10.1201/9780429351365-19.

    Article  Google Scholar 

  215. Wittich, W., M. C. Lorenzini, S. N. Markowitz, M. Tolentino, S. A. Gartner, J. E. Goldstein, and G. Dagnelie. The effect of a head-mounted low vision device on visual function. Optom. Vis. Sci. 95(9):774, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Williams, M., K. K. Yao, and J. R. Nurse. ToARist: an augmented reality tourism app created through user-centred design, 2018. arXiv:1807.05759.

  217. Aguilar, C., and E. Castet. Evaluation of a gaze-controlled vision enhancement system for reading in visually impaired people. PLoS One.12(4):e0174910, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Stearns, L., V. DeSouza, J. Yin, L. Findlater, and J. E. Froehlich. Augmented reality magnification for low vision users with the microsoft hololens and a finger-worn camera. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 361–362, 2017.

  219. Albouys-Perrois, J., J. Laviole, J. Briant, A. Brock. Towards a multisensory augmented reality map for blind and low vision people: a participatory design approach. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI’18). Association for Computing Machinery, New York, NY, USA, 21–26 April, pp. 1–14, 2018.

  220. Tang, R., L. F. Ma, Z. X. Rong, M. D. Li, J. P. Zeng, X. D. Wang, H. E. Liao, and J. H. Dong. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: a review of current methods. Hepatob. Pancreat. Dis. Int. 17(2):101–112, 2018.

    Article  Google Scholar 

  221. Zuniga, R., J. Magee. Conversation aid for people with low vision using head mounted display and computer vision emotion detection. In: Computers Helping People with Special Needs: 16th International Conference, ICCHP 2018, Linz, Austria, July 11–13, 2018, Proceedings, Part II 16, pp. 44–50. New York: Springer.

  222. Gupta, A., K. Scott, and M. Dukewich. Innovative technology using virtual reality in the treatment of pain: does it reduce pain via distraction, or is there more to it? Pain Medicine. 19(1):151–159, 2018.

    Article  PubMed  Google Scholar 

  223. Kinateder, M., J. Gualtieri, M. J. Dunn, W. Jarosz, X. D. Yang, and E. A. Cooper. Using an augmented reality device as a distance-based vision aid—promise and limitations. Optom. Vis. Sci. 95(9):727, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Chen, Y., Q. Wang, H. Chen, X. Song, H. Tang, and M. Tian. An overview of augmented reality technology. J. Phys. 1237(2), 022082, 2018.

  225. Zhao, Y., E. Kupferstein, B. V. Castro, S. Feiner, and S. Azenkot. Designing AR visualizations to facilitate stair navigation for people with low vision. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pp. 387–402, 2019.

  226. Koch, T. Simulation of diabetic Macular Edema in virtual reality. 2019.

  227. Daga, F. B., E. Macagno, C. Stevenson, A. Elhosseiny, A. Diniz-Filho, E. R. Boer, J. Schulze, and F. A. Medeiros. Wayfinding and glaucoma: a virtual reality experiment. Investig. Ophthalmol. Visual Sci. 58(9):3343–3349, 2017.

    Article  Google Scholar 

  228. Lam, M. C., H. K. Tee, S. S. M. Nizam, N. C. Hashim, N. A. Suwadi, S. Y. Tan, N. A. Abd Majid, H. Arshad, and S. Y. Liew. Interactive augmented reality with natural action for chemistry experiment learning. Tem J. 9(1):351–360, 2020.

    Google Scholar 

  229. Zavlanou, C. and A. Lanitis. Virtual reality-based simulation of age-related visual deficiencies: implementation and evaluation in the design process. In: Human Interaction and Emerging Technologies: Proceedings of the 1st International Conference on Human Interaction and Emerging Technologies (IHIET 2019), August 22–24, 2019, Nice, France, pp. 262–267, 2020. New York: Springer.

  230. Kim, S. K., S. J. Kang, Y. J. Choi, M. H. Choi, and M. Hong. Augmented-reality survey: from concept to application. KSII Trans. Internet Inf. Syst. 2017. https://doi.org/10.3837/tiis.2017.02.019.

    Article  Google Scholar 

  231. Langlotz, T., Y. Itoh, and J. Sutton. Amplifying Human Vision Using Computational Glasses (2018). https://www.hci.otago.ac.nz/downloads/arive/2020/ARIVELecture4ComputationalGlasses.pdf

Download references

Funding

NASA Grant [80NSSC20K183]: A Non-intrusive Ocular Monitoring Framework to Model Ocular Structure and Functional Changes due to Long-term Spaceflight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan Waisberg.

Ethics declarations

Conflict of interest

The authors report no commercial or proprietary interest in any product or concept discussed in this article.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, N., Ong, J., Waisberg, E. et al. Advanced Visualization Engineering for Vision Disorders: A Clinically Focused Guide to Current Technology and Future Applications. Ann Biomed Eng 52, 178–207 (2024). https://doi.org/10.1007/s10439-023-03379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03379-8

Keywords

Navigation