Skip to main content

Advertisement

Log in

The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review

  • Low Vision
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Introduction

Developments in image processing techniques and display technology have led to the emergence of augmented reality (AR) and virtual reality (VR)–based low vision devices (LVDs). However, their promise and limitations in low vision rehabilitation are poorly understood. The objective of this systematic review is to appraise the application of AR/VR LVDs aimed at visual field expansion and visual acuity improvement in low vision rehabilitation.

Methods

A systematic search of the literature was performed using MEDLINE, Embase, PsychInfo, HealthStar, and National Library of Medicine (PubMed) from inception to March 6, 2022. Articles were eligible if they included an AR or VR LVD tested on a sample of individuals with low vision and provided visual outcomes such as visual acuity, visual fields, and object recognition.

Results

Of the 652 articles identified, 16 studies comprising 382 individuals with a mean age of 52.17 (SD = 18.30) years, and with heterogeneous low vision etiologies (i.e., glaucoma, age-related macular degeneration, retinitis pigmentosa) were included in this systematic review. Most articles used AR (53%), VR (40%), and one article used both AR and VR. The main visual outcomes evaluated were visual fields (67%), visual acuity (65%), and contrast sensitivity (27%). Various visual enhancement techniques were employed including variable magnification using digital zoom (67%), contrast enhancements (53%), and minification (27%). AR LVDs were reported to expand the visual field from threefold to ninefold. On average, individuals using AR/VR LVDs experienced an improved in visual acuity from 0.9 to 0.2 logMAR. Ten articles were classified as high or moderate risk of bias.

Conclusion

AR/VR LVDs were found to afford visual field expansion and visual acuity improvement in low vision populations. Even though the results of this review are promising, the lack of controlled studies with well-defined populations, use of small, convenience samples, and incomplete reporting of inclusion and exclusion criteria among included studies makes it challenging to judge the true impact of these devices. Future studies should address these limitations and compare various AR/LVDs to determine what is the ideal LVD type and vision enhancement combination based on the user’s level of visual ability and lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fontenot JL, Bona MD, Kaleem MA et al (2018) Vision Rehabilitation Preferred Practice Pattern®. Ophthalmology 125:P228–P278. https://doi.org/10.1016/j.ophtha.2017.09.030

    Article  PubMed  Google Scholar 

  2. Assi L, Chamseddine F, Ibrahim P, Sabbagh H, Rosman L, Congdon N, Evans J, Ramke J, Kuper H, Burton MJ, Ehrlich JR, Swenor BK (2021) A Global Assessment of Eye Health and Quality of Life: A Systematic Review of Systematic Reviews. JAMA Ophthalmol 139(5):526–541. https://doi.org/10.1001/jamaophthalmol.2021.0146

    Article  PubMed  Google Scholar 

  3. Gopalakrishnan S, Suwalal SC, Bhaskaran G, Raman R (2020) Use of augmented reality technology for improving visual acuity of individuals with low vision. Indian J Ophthalmol 68:1136–1142. https://doi.org/10.4103/ijo.IJO_1524_19

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bittner AK, Yoshinaga PD, Wykstra SL, Li T (2020) Telerehabilitation for people with low vision. Cochrane Database Syst Rev 2(2):CD011019. https://doi.org/10.1002/14651858.CD011019.pub3

  5. Foster A, Gilbert C, Johnson G (2008) Changing patterns in global blindness: 1988–2008. Community Eye Health 21(67):37–9

    PubMed  PubMed Central  Google Scholar 

  6. Chan T, Friedman DS, Bradley C, Massof R (2018) Estimates of incidence and prevalence of visual impairment, low vision, and blindness in the United States. JAMA Ophthalmol 136(1):12–19. https://doi.org/10.1001/jamaophthalmol.2017.4655

    Article  PubMed  Google Scholar 

  7. Shah P, Schwartz SG, Gartner S, Scott IU, Flynn HW Jr. (2018) Low vision services: a practical guide for the clinician. Ther Adv Ophthalmol. https://doi.org/10.1177/2515841418776264

  8. Abou-Hanna JJ, Leggett AN, Andrews CA, Ehrlich JR (2021) Vision impairment and depression among older adults in low- and middle-income countries. Int J Geriatr Psychiatry 36(1):64–75. https://doi.org/10.1002/gps.5394

    Article  PubMed  Google Scholar 

  9. Nollett C, Bartlett R, Man R et al (2020) Barriers to integrating routine depression screening into community low vision rehabilitation services: a mixed methods study. BMC Psychiatry 20(1):419. https://doi.org/10.1186/s12888-020-02805-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Nispen RMA, Virgili G, Hoeben M, et al (2020) Low vision rehabilitation for better quality of life in visually impaired adults. Cochrane Database Syst Rev 27;1(1):CD006543. https://doi.org/10.1002/14651858.CD006543.pub2

  11. Scott IU, Smiddy WE, Schiffman J et al (1999) Quality of life of low-vision patients and the impact of low-vision services. Am J Ophthalmol 128(1):54–62. https://doi.org/10.1016/s0002-9394(99)00108-7

    Article  CAS  PubMed  Google Scholar 

  12. Copolillo A, Teitelman JL (2005) Acquisition and integration of low vision assistive devices: understanding the decision-making process of older adults with low vision. Am J Occup Ther 59(3):305–13. https://doi.org/10.5014/ajot.59.3.305

    Article  PubMed  Google Scholar 

  13. Dickinson CM, Fotinakis V (2000) The limitations imposed on reading by low vision aids. Optom Vision Sci 77(7):364–72. https://doi.org/10.1097/00006324-200007000-00011

    Article  CAS  Google Scholar 

  14. Lam N, Leat SJ (2013) Barriers to accessing low-vision care: the patient’s perspective. Can J Ophthalmol 48(6):458–62. https://doi.org/10.1016/j.jcjo.2013.02.014

    Article  PubMed  Google Scholar 

  15. Iskander M, Ogunsola T, Ramachandran R et al (2021) Virtual reality and augmented reality in ophthalmology: a contemporary prospective. Asia Pac J Ophthalmol (Phila) 10(3):244–252. https://doi.org/10.1097/APO.0000000000000409

    Article  PubMed  Google Scholar 

  16. Yeo JH, Bae SH, Lee SH, et al (2022) Clinical performance of a smartphone-based low vision aid.Sci Rep 12(1):10752. https://doi.org/10.1038/s41598-022-14489-z

  17. Angelopoulos AN, Ameri H, Mitra D, Humayun M (2019) Enhanced depth navigation through augmented reality depth mapping in patients with low vision. Sci Rep 9:11230. https://doi.org/10.1038/s41598-019-47397-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deemer AD, Swenor BK, Fujiwara K et al (2019) Preliminary evaluation of two digital image processing strategies for head-mounted magnification for low vision patients. Transl Vis Sci Technol 8(1):23. https://doi.org/10.1167/tvst.8.1.23

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vargas-Martín F, Peli E (2002) Augmented-view for restricted visual field: multiple device implementations. Optom Vis Sci 79(11):715–23. https://doi.org/10.1097/00006324-200211000-00009

    Article  PubMed  Google Scholar 

  20. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  21. Munn Z, Moola S, Riitano D, Lisy K (2014) The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int J Health Policy Manag 3(3):123–8. https://doi.org/10.15171/ijhpm.2014.7

  22. Wittich W, Lorenzini MC, Markowitz SN et al (2018) The effect of a head-mounted low vision device on visual function. Optom Vis Sci 95:774–784. https://doi.org/10.1097/OPX.0000000000001262

    Article  PubMed  PubMed Central  Google Scholar 

  23. Crossland MD, Starke SD, Imielski P et al (2019) Benefit of an electronic head-mounted low vision aid. Ophthalmic Physiol Opt 39:422–431. https://doi.org/10.1111/opo.12646

    Article  PubMed  Google Scholar 

  24. Powell W, Powell V, Cook M (2020) The accessibility of commercial off-the-shelf virtual reality for low vision users: a macular degeneration case study. Cyberpsychol Behav Soc Netw 23:185–191. https://doi.org/10.1089/cyber.2019.0409

    Article  PubMed  Google Scholar 

  25. Bowers AR, Luo G, Rensing NM, Peli E (2004) Evaluation of a prototype minified augmented-view device for patients with impaired night vision. Ophthalmic Physiol Opt 24(4):296–312. https://doi.org/10.1111/j.1475-1313.2004.00228.x

    Article  PubMed  Google Scholar 

  26. Trese MGJ, Khan NW, Branham K et al (2016) Expansion of severely constricted visual field using google glass. Ophthalmic Surg Lasers Imaging Retina 47:486–489. https://doi.org/10.3928/23258160-20160419-15

    Article  PubMed  Google Scholar 

  27. Peláez-Coca MD, Sobrado-Calvo P, Vargas-Martín F (2011) Optoelectronic aid for patients with severely restricted visual fields in daylight conditions. J Mod Opt 58:1871–1879. https://doi.org/10.1080/09500340.2011.615952

    Article  Google Scholar 

  28. Peláez-Coca MD, Vargas-Martín F, Mota S et al (2009) A versatile optoelectronic aid for low vision patients. Ophthalmic Physiol Opt 29:565–572. https://doi.org/10.1111/j.1475-1313.2009.00673.x

    Article  PubMed  Google Scholar 

  29. Luo G, Woods RL, Peli E (2009) Collision judgment when using an augmented-vision head-mounted display device. Invest Ophthalmol Vis Sci 50:4509–4515. https://doi.org/10.1167/iovs.08-2916

    Article  PubMed  Google Scholar 

  30. Sayed AM, Abdel-Mottaleb M, Kashem R et al (2020) Expansion of peripheral visual field with novel virtual reality digital spectacles. Am J Ophthalmol 210:125–135. https://doi.org/10.1016/j.ajo.2019.10.006

    Article  PubMed  Google Scholar 

  31. Sayed AM, Kashem R, Abdel-Mottaleb M et al (2020) Toward improving the mobility of patients with peripheral visual field defects with novel digital spectacles. Am J Ophthalmol 210:136–145. https://doi.org/10.1016/j.ajo.2019.10.005

    Article  PubMed  Google Scholar 

  32. Kinateder M, Gualtieri J, Dunn MJ et al (2018) Using an augmented reality device as a distance-based vision aid-promise and limitations. Optom Vis Sci 95:727–737. https://doi.org/10.1097/OPX.0000000000001232

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moshtael H, Tooth C, Nuthmann A et al (2020) Dynamic text presentation on smart glasses: a pilot evaluation in age-related macular degeneration. Br J Vis Impair 38:24–37. https://doi.org/10.1177/0264619619889998

    Article  Google Scholar 

  34. Kay PA, Robb RA., Myers RP, King BF (1996). Creation and validation of patient specific anatomical models for prostate surgery planning using virtual reality. In: Höhne, K.H., Kikinis, R. (eds) Visualization in Biomedical Computing. VBC 1996. Lecture Notes in Computer Science, vol 1131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046997

  35. Ha H, Hong J (2016) Augmented reality in medicine. Hanyang Med Rev 36:242–247. https://doi.org/10.7599/hmr.2016.36.4.242

    Article  Google Scholar 

  36. Rankin TM, Slepian MJ, Armstrong DG (2015) Augmented Reality in Surgery. In: Latifi, R., Rhee, P., Gruessner, R. (eds) Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2671-8_6

  37. Iskander M, Ogunsola T, Ramachandran R et al (2021) Virtual reality and augmented reality in ophthalmology: a contemporary prospective. Asia Pac J Ophthalmol (Phila) 10:244–252

    Article  PubMed  Google Scholar 

  38. Htike HM, Margrain TH, Lai YK, Eslambolchilar P (2020) Ability of head-mounted display technology to improve mobility in people with low vision: a systematic review. Transl Vis Sci Technol 9:1–27. https://doi.org/10.1167/tvst.9.10.26

    Article  Google Scholar 

  39. Ma MKI, Saha C, Poon SHL et al (2022) Virtual reality and augmented reality— emerging screening and diagnostic techniques in ophthalmology: a systematic review. Surv Ophthalmol 67(5):1516–1530. https://doi.org/10.1016/j.survophthal.2022.02.001

    Article  PubMed  Google Scholar 

  40. Ong CW, Tan MCJ, Lam M, Koh VTC (2021) Applications of extended reality in ophthalmology: systematic review. J Med Internet Res 23(8):e24152. https://doi.org/10.2196/24152

  41. Goh ES, Sunar MS, Ismail AW (2019) 3D object manipulation techniques in handheld mobile augmented reality interface: A review. IEEE Accessvol. 7(40581-40601) 2019. https://doi.org/10.1109/ACCESS.2019.2906394

  42. Ahmad Chowdhury S, Arshad H, Parhizkar B, Obeidy WK (2013) Handheld Augmented Reality Interaction Technique. In: Zaman, H.B., Robinson, P., Olivier, P., Shih, T.K., Velastin, S. (eds) Advances in Visual Informatics. IVIC 2013. Lecture Notes in Computer Science, vol 8237. Springer, Cham. https://doi.org/10.1007/978-3-319-02958-0_38

  43. Pur D, Kikinov D, de Ribaupierre S, Eagleson R (2019) Visualization of multimodal brain connectivity for neurosurgical planning using handheld device augmented reality. In: Proceedings of the 5th World Congress on Electrical Engineering and Computer Systems and Science, ICBES 126, Lisbon, Portugal, August 2019. https://doi.org/10.11159/icbes19.126

  44. Yoo S, Parker C (2015) Controller-less interaction methods for google cardboard. In: SUI 2015 - Proceedings of the 3rd ACM Symposium on Spatial User Interaction, Los Angeles, USA. https://doi.org/10.1145/2788940.2794359

  45. Wolffsohn JS, Cochrane AL (2000) Design of the low vision quality-of-life questionnaire (LVQOL) and measuring the outcome of low-vision rehabilitation. Am J Ophthalmol 130(6):793–802. https://doi.org/10.1016/s0002-9394(00)00610-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiana R. Pur.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Search strategy used to survey databases

  

MEDLINE OVID

EMBASE

PsychInfo

OVID Healthstar

#

Search

Results

Results

Results

Results

1

augmented reality.mp. or exp Augmented Reality/

3282

3939

1131

1819

2

virtual reality.mp. or exp Virtual Reality/

14,636

27,299

12,350

9472

3

mixed reality.mp

605

689

230

319

4

(augmented environment or virtual environment or augmented object).mp. or exp Imaging, Three-Dimensional/ or 3D object.mp

91,382

117,763

3424

83,661

5

(retinal imaging laser or Head mounted display).mp. or exp Smart Glasses/ or HMD.mp. or exp Self-Help Devices/ or eSight.mp. or HTC vive.mp

14,453

5162

582

13,036

6

(samsung gear or rendering engine or oculus or smartphone or tablet or smart device or sensory substitution or assistive technology or retinal prosth* or computer accommodation system or computer vision or electronic travel aid or wearable or object recognition or object detection or human computer interaction or oxSight or electronic glasses or Google glass* or ARIANNA + or Aira or user computer interface or computer assisted image processing).mp. or exp computer-assisted instruction/ or exp user-computer interface/ or exp image processing, computer-assisted/ or computer simulation.mp. or exp sensory aids

586,110

540,143

74,876

456,036

7

retinal prosthesis.mp. or exp Visual Prosthesis/

892

3018

510

627

8

exp Eye, Artificial/

1862

518

0

1668

9

low vision.mp. or exp Vision, Low/ or blind.mp. or exp Blidness, Cortical/ or exp Blindness/ or retinal disease.mp. or exp Retinal Diseases/ or exp Diabetic Retinopathy/ or exp Vision Disorders/ or visual impairment.mp. or exp Optic Atrophy, Hereditary, Leber/ or macular degeneration.mp. or exp Retinal degeneration/ or exp Macular Degeneration/ or exp Scotoma/ or exp Vision, Low/ or sight loss.mp. or exp Vision Disorders/

500,468

917,731

65,533

377,145

10

exp Optic Nerve Diseases/ or exp Glaucoma/ exp Visually Impaired Persons

89,218

180,383

510

50,637

11

exp Spatial Navigation or navigation.mp or exp mobility limitation or mobility.mp or wayfinding.mp or contrast enhancement.mp or edge enhancement.mp or exp color perception or colour enhancement.mp or colour enhancement.mp or colour filter.mp or color filter.mp or exp visual acuity or acuity.mp or exp gait or exp gait disorders, neurologic or obstacle avoidance.mp or obstacle detection.mp or exp postural balance or balance.mp or exp haptic technology or exp touch perception or tactile grahics.mp or accessibility.mp or exp vision, binocular or exp astigmatism or exp refractive errors or exp visual acuity or exp myopia or exp refraction, ocular or exp spatial behavior or exp orientation or visual rehabilitation.mp or collision detection.mp

903,795

1,303,403

142,572

510,382

12

1 or 2 or 3 or 4

106,376

144,163

13,898

92,813

13

5 or 6 or 7 or 8

599,187

546,179

75,267

467,550

14

9 or 10

568,880

1,028,295

65,533

414,479

15

11 AND 12 AND 13 AND 14

337

249

38

322

PubMed

(“augmented reality” OR AR OR “virtual reality” OR VR OR “mixed reality” OR “augmented environment” OR “virtual environment” OR “augmented object” OR “virtual object”) AND (“retinal imaging laser” OR “Head mounted display” OR HMD OR “smart glass*” OR “self-help device*” OR “eSight” OR “HTC vive” OR “samsung gear” OR “rendering engine” OR “oculus” OR “smartphone” OR “tablet” OR “smart device” OR “sensory substitution” OR “assistive technology” OR “retinal prosth*” OR “computer accommodation system” OR “computer vision” OR “electronic travel aid” OR “wearable” OR “human computer interaction” OR “oxSight” OR “electronic glasses” OR “Google glass*” OR “ARIANNA + ” OR “Aira” OR “user computer interface” OR “computer assisted image processing” OR “computer-assisted instruction” OR “user-computer interface” OR “computer-assisted” OR “computer simulation” OR “sensory aids” OR “retinal prosthesis” OR “Visual Prosthesis” OR “artificial eye”) AND (“low vision” OR “blind*” OR “blindness” OR “retinal disease” OR “retina” OR “diabetic retinopathy” OR “optic neuropathy” OR “vision disorder*” OR “visual impairment” OR “retinal degeneration” OR “scotoma” OR “sight loss” OR “macular degeneration” OR “macular” OR “foveal” OR “vision disorders” OR “optic nerve disease” OR “glaucoma” OR “visually impaired”) AND (“spatial navigation” OR navigation OR mobility OR wayfinding OR “contrast enhancement” OR “edge enhancement” OR “colour filter” OR “visual acuity” OR “acuity” OR “gait” OR “obstacle” OR balance OR haptic OR “touch perception” OR “tactile graphics” OR accessibility OR “binocular vision” OR “monocular vision” OR “astigmatism” OR refractive OR myopia OR “spatial behavior” OR orientation OR “visual rehabilitation” OR “vision rehabilitation” OR “collision detection”).

Appendix 2

figure b

Assessment of risk of bias and quality of included studies based on criteria from Joanna Briggs Institute Critical Appraisal Tools. For each article, JBI criteria questions were noted as “yes,” “no,” “unclear,” or “not applicable.” Studies that reached up to 49% of questions as “yes” were classified as high risk of bias; from 50 to 69% as moderate ROB; and more than 70% as low ROB

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pur, D.R., Lee-Wing, N. & Bona, M.D. The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review. Graefes Arch Clin Exp Ophthalmol 261, 1743–1755 (2023). https://doi.org/10.1007/s00417-022-05972-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05972-4

Keywords

Navigation