Skip to main content
Log in

Development of Novel Balloon-Integrated Optical Catheter for Endoscopic and Circumferential Laser Application

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The current study aims to demonstrate the feasibility of a novel balloon-integrated optical catheter (BIOC) to achieve endoscopic laser application for circumferential coagulation of a tubular tissue structure. Both optical and thermal numerical simulations were developed to predict the propagation of laser light and a spatio-temporal distribution of temperature in tissue. Ex vivo esophagus tissue was tested with 980 nm laser light at 30 W for 90 s for quantitative evaluations. In vivo porcine models were used to validate the performance of BIOC for circumferential and endoscopic laser coagulation of esophagus in terms of acute tissue responses post-irradiation. Optical simulations confirmed that a diffusing applicator was able to generate a circumferential light distribution in a tubular tissue structure. Both numerical and experimental results presented that the maximum temperature elevation occurred at 3–5 mm (muscle layer) below the mucosa surface after 90 s irradiation. In vivo tests confirmed the circumferential delivery of laser light to a deep muscle layer as well as no evidence of thermal damage to the esophageal mucosa. The proposed BIOC can be a feasible optical device to provide circumferential laser irradiation as well as endoscopic coagulation of tubular esophagus tissue for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Fass, R., and R. Frazier. The role of dexlansoprazole modified-release in the management of gastroesophageal reflux disease. Therap. Adv. Gastroenterol. 10:243–251, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. El-Serag, H. B., S. Sweet, C. C. Winchester, and J. Dent. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut. 63:871–880, 2014.

    Article  PubMed  Google Scholar 

  3. Clarrett, D. M., and C. Hachem. Gastroesophageal reflux disease (GERD). Missouri Med. 115:214, 2018.

    PubMed  PubMed Central  Google Scholar 

  4. Fass, R., G. E. Boeckxstaens, H. El-Serag, R. Rosen, D. Sifrim, and M. F. Vaezi. Gastro-oesophageal reflux disease. Nat. Rev. Dis. Primers. 7:1–23, 2021.

    Article  Google Scholar 

  5. Kahrilas, P. J. Complications of gastroesophageal reflux in adults. Volume, 2020.

  6. Sandhu, D. S., and R. Fass. Current trends in the management of gastroesophageal reflux disease. Gut Liver. 12:7, 2018.

    Article  CAS  PubMed  Google Scholar 

  7. Kroch, D. A., and R. D. Madanick. Medical treatment of gastroesophageal reflux disease. World J. Surg. 41:1678–1684, 2017.

    Article  PubMed  Google Scholar 

  8. Triadafilopoulos, G. Stretta: a valuable endoscopic treatment modality for gastroesophageal reflux disease. World J. Gastroenterol. 20:7730, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chang, P., and F. Friedenberg. Obesity and GERD. Gastroenterol. Clin. 43:161–173, 2014.

    Article  Google Scholar 

  10. DeMeester, S. R. Laparoscopic hernia repair and fundoplication for gastroesophageal reflux disease. Gastrointest. Endosc. Clin. 30:309–324, 2020.

    Article  Google Scholar 

  11. Richter, J. E. Gastroesophageal reflux disease treatment: side effects and complications of fundoplication. Clin. Gastroenterol. Hepatol. 11:465–471, 2013.

    Article  PubMed  Google Scholar 

  12. Richter, J. E., A. Kumar, S. Lipka, B. Miladinovic, and V. Velanovich. Efficacy of laparoscopic Nissen fundoplication vs transoral incisionless fundoplication or proton pump inhibitors in patients with gastroesophageal reflux disease: a systematic review and network meta-analysis. Gastroenterology.154(1298–308):e7, 2018.

    Google Scholar 

  13. Bonavina, L., T. R. DeMeester, and R. A. Ganz. LINX™ Reflux Management System: magnetic sphincter augmentation in the treatment of gastroesophageal reflux disease. Expert Rev. Gastroenterol. Hepatol. 6:667–674, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. Halpern, S. E., A. Gupta, O. K. Jawitz, A. Y. Choi, H. V. Salfity, et al. Safety and efficacy of an implantable device for management of gastroesophageal reflux in lung transplant recipients. J. Thorac. Dis. 13:2116, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zadeh, J., A. Andreoni, D. Treitl, and K. Ben-David. Spotlight on the Linx™ reflux management system for the treatment of gastroesophageal reflux disease: evidence and research. Med. Devices 291–300, 2018.

  16. Flores, L., C. Krause, B. Pokala, S. Hosein, P. R. Armijo, et al. Novel therapies for gastroesophageal reflux disease. Curr. Prob. Surg.56:100692, 2019.

    Article  Google Scholar 

  17. Shibli, F., and R. Fass. Endoscopic anti-reflux procedures: ready for clinical use? Curr. Treat. Opt. Gastroenterol. 19:399–420, 2021.

    Article  Google Scholar 

  18. Lee, D. P., and K. J. Chang. Endoscopic management of GERD. Dig. Dis. Sci. 1–14, 2022.

  19. Testoni, P. A., G. Mazzoleni, and S. G. G. Testoni. Transoral incisionless fundoplication for gastro-esophageal reflux disease: techniques and outcomes. World J. Gastrointest. Pharmacol. Therap. 7:179, 2016.

    Article  Google Scholar 

  20. Huang, X., S. Chen, H. Zhao, X. Zeng, J. Lian, et al. Efficacy of transoral incisionless fundoplication (TIF) for the treatment of GERD: a systematic review with meta-analysis. Surg. Endosc. 31:1032–1044, 2017.

    Article  PubMed  Google Scholar 

  21. Zacherl, J., A. Roy-Shapira, L. Bonavina, A. Bapaye, R. Kiesslich, et al. Endoscopic anterior fundoplication with the Medigus Ultrasonic Surgical Endostapler (MUSE™) for gastroesophageal reflux disease: 6-month results from a multi-center prospective trial. Surg. Endosc. 29:220–229, 2015.

    Article  PubMed  Google Scholar 

  22. Testoni, P. A., S. Testoni, G. Mazzoleni, G. Pantaleo, M. B. Cilona, et al. Transoral incisionless fundoplication with an ultrasonic surgical endostapler for the treatment of gastroesophageal reflux disease: 12-month outcomes. Endoscopy. 52:469–473, 2020.

    Article  PubMed  Google Scholar 

  23. Sandhu, D. S., and R. Fass. Stretta therapy in the management of gastroesophageal reflux disease (GERD). Ann Esophagus. 2:1–11, 2019.

    Article  Google Scholar 

  24. Fass, R. Endoscopic approaches for the treatment of gastroesophageal reflux disease. Gastroenterol. Hepatol. 15:555, 2019.

    Google Scholar 

  25. Fass, R., F. Cahn, D. J. Scotti, and D. A. Gregory. Systematic review and meta-analysis of controlled and prospective cohort efficacy studies of endoscopic radiofrequency for treatment of gastroesophageal reflux disease. Surg. Endosc. 31:4865–4882, 2017.

    Article  PubMed  Google Scholar 

  26. Lipka, S., A. Kumar, and J. E. Richter. No evidence for efficacy of radiofrequency ablation for treatment of gastroesophageal reflux disease: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol.13(1058–67):e1, 2015.

    Google Scholar 

  27. Truong, V. G., S. Park, and H. W. Kang. Spatial effect of conical angle on optical-thermal distribution for circumferential photocoagulation. Biomed. Opt. Express. 8:5663–5674, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Truong, V. G., S. Jeong, J.-S. Park, S. M. Kim, D. H. Lee, and H. W. Kang. Endoscopic ultrasound (EUS)-guided cylindrical interstitial laser ablation (CILA) on in vivo porcine pancreas. Biomed. Opt. Express. 12:4423–4437, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Welch, A. J., and M. J. Van Gemert. Optical-thermal response of laser-irradiated tissue. Springer, 2011.

    Book  Google Scholar 

  30. Pearce, J. A. Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. Proc. Energy Based Treat Tissue Assessment V. 7181:35–49, 2009.

    Google Scholar 

  31. Mao, Y., H. Qiu, Q. Liu, Z. Lu, K. Fan, et al. Endoscopic holmium: YAG laser ablation of early gastrointestinal intramucosal cancer. Lasers Med. Sci. 28:1505–1509, 2013.

    Article  PubMed  Google Scholar 

  32. Yang, G., L. Zhao, S. Li, S. Qiu, Y. Wang, and J. Jia. Endoscopic Nd: YAG laser therapy in patients with early superficial carcinoma of the esophagus and the gastric cardia. Endoscopy. 26:681–685, 1994.

    Article  CAS  PubMed  Google Scholar 

  33. Moghissi, K., K. Dixon, M. Stringer, and J. Thorpe. Photofrin PDT for early stage oesophageal cancer: long term results in 40 patients and literature review. Photodiagn. Photodyn. Therapy. 6:159–166, 2009.

    Article  CAS  Google Scholar 

  34. Mellow, M. H., and H. Pinkas. Endoscopic therapy for esophageal carcinoma with Nd: YAG laser: prospective evaluation of efficacy, complications, and survival. Gastrointest Endosc. 30:334–339, 1984.

    Article  CAS  PubMed  Google Scholar 

  35. Lou, J., Q. Hu, T. Ma, W. Chen, J. Wang, and P. Pankaj. A novel approach with holmium laser ablation for endoscopic management of intrahepatic biliary stricture. BMC Gastroenterol. 19:1–7, 2019.

    Article  Google Scholar 

  36. Neuberger, W., and M. Sabado. Gastric Reflux Treatment with Lasers. Google Patents 2015.

  37. Loeb, M. P. Multi-fiber laser device for shrinking tissue. Google Patents 2003.

  38. Kim, M., V. G. Truong, S. Kim, H. Kim, T. Hasenberg, and H. W. Kang. In vivo investigation of noncontact rapid photothermal hemostasis on venous and arterial bleeding. IEEE Trans. Biomed. Eng. 68:2689–2697, 2021.

    Article  PubMed  Google Scholar 

  39. Muthusamy, V. R., J. R. Lightdale, R. D. Acosta, V. Chandrasekhara, K. V. Chathadi, et al. The role of endoscopy in the management of GERD. Gastrointest. Endosc. 81:1305–1310, 2015.

    Article  PubMed  Google Scholar 

  40. Ihde, G. M. The evolution of TIF: transoral incisionless fundoplication. Therap. Adv. Gastroenterol. 13:1756284820924206, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kahrilas, P. J. Radiofrequency therapy of the lower esophageal sphincter for treatment of GERD. Gastrointest. Endosc. 57:723–731, 2003.

    Article  PubMed  Google Scholar 

  42. Sowa, P., and J. B. Samarasena. Nonablative radiofrequency treatment for gastroesophageal reflux disease (STRETTA). Gastrointest. Endosc. Clin. 30:253–265, 2020.

    Article  Google Scholar 

  43. Chang, K., and D. Utley. Endoscopic ultrasound (EUS) in-vivo assessment of radiofrequency (RF) energy delivery to the gastroesophageal (GE) junction in a porcine model. Proc. Gastrointest. Endosc. 53:165, 2001.

    Google Scholar 

  44. Iqbal, A., V. Salinas, and C. J. Filipi. Endoscopic therapies of gastroesophageal reflux disease. World J. Gastroenterol. 12:2641, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zerbib, F., S. Sacher-Huvelin, E. Coron, B. Coffin, C. Melchior, et al. Randomised clinical trial: oesophageal radiofrequency energy delivery versus sham for PPI-refractory heartburn. Aliment. Pharmacol. Therap. 52:637–645, 2020.

    Article  Google Scholar 

  46. Bergemann, K. J., R. Krasny, and S. R. Forrest. Thermal properties of organic light-emitting diodes. Organic Electron. 13:1565–1568, 2012.

    Article  CAS  Google Scholar 

  47. Incropera, F. P., D. P. DeWitt, T. L. Bergman, and A. S. Lavine. Fundamentals of Heat and Mass Transfer. New York: Wiley, 1996.

    Google Scholar 

  48. Venkatesan, G., G.-P. Jin, M.-C. Chyu, J.-X. Zheng, and T.-Y. Chu. Measurement of thermophysical properties of polyurethane foam insulation during transient heating. Int. J. Thermal Sci. 40:133–144, 2001.

    Article  CAS  Google Scholar 

  49. Bashkatov, A. N., E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, et al. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology. Med. Laser Appl. 22:95–104, 2007.

    Article  Google Scholar 

  50. Strömblad S. Measuring the optical properties of human muscle tissue using time-of-flight spectroscopy in the near infrared. LRAP 2015.

  51. Collins, C. M., M. B. Smith, and R. Turner. Model of local temperature changes in brain upon functional activation. J. Appl. Physiol. 97:2051–2055, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Starting Growth Technological R&D Program (S3222651) funded by the Small and Medium Business Administration (SMBA, Korea) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2021R1A6A1A03039211).

Funding

Small and Medium Business Administration (Grant Number S3222651) and Ministry of Education (Grant Number 2021R1A6A1A03039211).

Author information

Authors and Affiliations

Authors

Contributions

VGT: Conceptualization, methodology, data curation, validation, visualization, writing—original draft. HK: Data curation, formal analysis, writing—review and editing. B-IL: Data curation, resources. BC: Validation, resources. SJ: Conceptualization, methodology, review. S-JO: Histological analysis. HWK: Supervision, methodology, writing—review and editing.

Corresponding author

Correspondence to Hyun Wook Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this papers. GV Truong and HJ Kim are the employees of TeCure, Inc. HW Kang is the CEO and founder of TeCure, Inc.

Additional information

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, V.G., Kim, H., Lee, BI. et al. Development of Novel Balloon-Integrated Optical Catheter for Endoscopic and Circumferential Laser Application. Ann Biomed Eng 51, 2021–2034 (2023). https://doi.org/10.1007/s10439-023-03228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03228-8

Keywords

Navigation