Skip to main content
Log in

Pancreatic Cancer Presents Distinct Nanomechanical Properties During Progression

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cancer progression is closely related to changes in the structure and mechanical properties of the tumor microenvironment (TME). In many solid tumors, including pancreatic cancer, the interplay among the different components of the TME leads to a desmoplastic reaction mainly due to collagen overproduction. Desmoplasia is responsible for the stiffening of the tumor, poses a major barrier to effective drug delivery and has been associated with poor prognosis. The understanding of the involved mechanisms in desmoplasia and the identification of nanomechanical and collagen-based properties that characterize the state of a particular tumor can lead to the development of novel diagnostic and prognostic biomarkers. In this study, in vitro experiments were conducted using two human pancreatic cell lines. Morphological and cytoskeleton characteristics, cells’ stiffness and invasive properties were assessed using optical and atomic force microscopy techniques and cell spheroid invasion assay. Subsequently, the two cell lines were used to develop orthotopic pancreatic tumor models. Tissue biopsies were collected at different times of tumor growth for the study of the nanomechanical and collagen-based optical properties of the tissue using Atomic Force Microscopy (AFM) and picrosirius red polarization microscopy, respectively. The results from the in vitro experiments demonstrated that the more invasive cells are softer and present a more elongated shape with more oriented F-actin stress fibers. Furthermore, ex vivo studies of orthotopic tumor biopsies on MIAPaCa-2 and BxPC-3 murine tumor models highlighted that pancreatic cancer presents distinct nanomechanical and collagen-based optical properties relevant to cancer progression. The stiffness spectrums (in terms of Young’s modulus values) showed that the higher elasticity distributions were increasing during cancer progression mainly due desmoplasia (collagen overproduction), while a lower elasticity peak was evident - due to cancer cells softening - on both tumor models. Optical microscopy studies highlighted that collagen content increases while collagen fibers tend to form align patterns. Consequently, during cancer progression nanomechanical and collagen-based optical properties alter in relation to changes in collagen content. Therefore, they have the potential to be used as novel biomarkers for assessing and monitoring tumor progression and treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alibert, C., B. Goud, and J. B. Manneville. Are cancer cells really softer than normal cells? Biol. Cell. 109:167–189, 2017

    Article  PubMed  Google Scholar 

  2. Alizadeh, A. A., V. Aranda, A. Bardelli, C. Blanpain, C. Bock, et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21:846–853, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bastatas, L., D. Martinez-Marin, J. Matthews, J. Hashem, Y. J. Lee, et al. AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochim. Biophys. Acta. 1820:1111–1120, 2012

    Article  CAS  PubMed  Google Scholar 

  4. Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: Forcing tumour progression. Nat. Rev. Cancer. 9:108–122, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chasiotis, I., H. L. Fillmore, and G. T. Gillies. Atomic force microscopy measurement of cytostructural elements involved in the nanodynamics of tumour cell invasion. Nanotechnology. 14:557–561, 2003

    Article  CAS  Google Scholar 

  6. Chauhan, V. P., T. Stylianopoulos, Y. Boucher, and R. K. Jain. Delivery of molecular and nanoscale medicine to tumors: Transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2:281–298, 2011

    Article  CAS  PubMed  Google Scholar 

  7. Cross, S. E., Y. S. Jin, Q. Y. Lu, J. Rao, and J. K. Gimzewski. Green tea extract selectively targets nanomechanics of live metastatic cancer cells. Nanotechnology. 22:215101, 2011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cross, S. E., Y.-S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nano. 2:780–783, 2007

    Article  CAS  Google Scholar 

  9. Darling, E. M., S. Zauscher, J. A. Block, and F. Guilak. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: Do cell properties reflect metastatic potential? Biophys. J. 92:1784–1791, 2007

    Article  CAS  PubMed  Google Scholar 

  10. Deer, E. L., J. González-Hernández, J. D. Coursen, J. E. Shea, J. Ngatia, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 39:425–435, 2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drifka, C. R., A. G. Loeffler, K. Mathewson, G. Mehta, A. Keikhosravi, et al. Comparison of picrosirius red staining with second harmonic generation imaging for the quantification of clinically relevant collagen fiber features in histopathology samples. J. Histochem. Cytochem. 64:519–529, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Du, Y. X., Z. W. Liu, L. You, W. M. Wu, and Y. P. Zhao. Advances in understanding the molecular mechanism of pancreatic cancer metastasis. Hepatobiliary Pancreat Dis Int. 15:361–370, 2016

    Article  PubMed  Google Scholar 

  13. Eltzner, B., C. Wollnik, C. Gottschlich, S. Huckemann, and F. Rehfeldt. The filament sensor for near real-time detection of cytoskeletal fiber structures. PLoS ONE. 10:e0126346, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faria, E. C., N. Ma, E. Gazi, P. Gardner, M. Brown, et al. Measurement of elastic properties of prostate cancer cells using AFM. Analyst. 133:1498–1500, 2008

    Article  CAS  PubMed  Google Scholar 

  15. Feldman, R., and E. S. Kim. Prognostic and predictive biomarkers post curative intent therapy. Ann. Transl. Med. 5:374, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fuhrmann, A., J. R. Staunton, V. Nandakumar, N. Banyai, P. C. W. Davies, and R. Ros. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys. Biol. 8:015007, 2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gkretsi, V., A. Stylianou, M. Louca, and T. Stylianopoulos. Identification of Ras suppressor-1 (RSU-1) as a potential breast cancer metastasis biomarker using a three-dimensional in vitro approach. Oncotarget. 8:27364–27379, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gkretsi, V., A. Stylianou, P. Papageorgis, C. Polydorou, and T. Stylianopoulos. Remodeling components of the tumor microenvironment to enhance cancer therapy. Front. Oncol. 5:Article Number 214, 2015

    Article  Google Scholar 

  19. Gkretsi, V., A. Stylianou, and T. Stylianopoulos. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA). Exp. Cell Res. 352:281–292, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goetz, J. G., S. Minguet, I. Navarro-Lérida, J. J. Lazcano, R. Samaniego, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell. 146:148–163, 2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guck, J., S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88:3689–3698, 2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hermanowicz, P., M. Sarna, K. Burda, and H. Gabryś. AtomicJ: An open source software for analysis of force curves. Rev. Sci. Instrum. 85:063703, 2014

    Article  PubMed  Google Scholar 

  23. Jain, R. K., J. D. Martin, and T. Stylianopoulos. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16:321–346, 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalli, M., and T. Stylianopoulos. Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Front. Oncol. 8:55, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kaufman, L. J., C. P. Brangwynne, K. E. Kasza, E. Filippidi, V. D. Gordon, et al. Glioma expansion in collagen I matrices: Analyzing collagen concentration-dependent growth and motility patterns. Biophys. J. 89:635–650, 2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kontomaris, S. V., and A. Malamou. Hertz model or Oliver & Pharr analysis? Tutorial regarding AFM nanoindentation experiments on biological samples. Mater. Res. Express. 7:033001, 2020

    Article  CAS  Google Scholar 

  27. Kontomaris, S. V., and A. Stylianou. Atomic force microscopy for university students: Applications in biomaterials. Eur. J. Phys. 38:033003, 2017

    Article  Google Scholar 

  28. Kontomaris, S. V., A. Stylianou, K. S. Nikita, and A. Malamou. Determination of the linear elastic regime in AFM nanoindentation experiments on cells. Mater. Res. Express. 6:115410, 2019

    Article  Google Scholar 

  29. Lam, W. A., M. J. Rosenbluth, and D. A. Fletcher. Chemotherapy exposure increases leukemia cell stiffness. Blood. 109:3505–3508, 2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lekka, M. Discrimination between normal and cancerous cells using AFM. BioNanoScience. 6:65–80, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lekka, M., D. Gil, K. Pogoda, J. Dulińska-Litewka, R. Jach, et al. Cancer cell detection in tissue sections using AFM. Arch. Biochem. Biophys. 518:151–156, 2012

    Article  CAS  PubMed  Google Scholar 

  32. Lekka, M., P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys J. 28:312–316, 1999

    Article  CAS  PubMed  Google Scholar 

  33. Lekka, M., K. Pogoda, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, et al. Cancer cell recognition—Mechanical phenotype. Micron. 43:1259–1266, 2012

    Article  PubMed  Google Scholar 

  34. Lekka, M., and J. Wiltowska-Zuber. Biomedical applications of AFM, Nano 2008: 2nd national conference on nanotechnology. J. Phys. Conf. Ser. 146:012023, 2009

    Article  Google Scholar 

  35. Lelièvre, S. A., V. M. Weaver, J. A. Nickerson, C. A. Larabell, A. Bhaumik, et al. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc. Natl. Acad. Sci. U.S.A. 95:14711–14716, 1998

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, Q. S., G. Y. H. Lee, C. N. Ong, and C. T. Lim. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374:609–613, 2008

    Article  CAS  PubMed  Google Scholar 

  37. Liu, M., X. Zhang, C. Long, H. Xu, X. Cheng, et al. Collagen-based three-dimensional culture microenvironment promotes epithelial to mesenchymal transition and drug resistance of human ovarian cancer in vitro. RSC Adv. 8:8910–8919, 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Louca, M., A. Stylianou, A. Minia, V. Pliaka, G. L. Alexopoulos, et al. Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and inhibits it in non-aggressive cells through STAT6 phospho-regulation. Sci. Rep. 9:7782, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  39. Natal, R. A., J. Vassallo, G. R. Paiva, V. B. Pelegati, G. O. Barbosa, et al. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumor Biol. 40:1010428318770953, 2018

    Article  Google Scholar 

  40. Panagi, M., C. Voutouri, F. Mpekris, P. Papageorgis, M. Martin, et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics. 10:1910–1922, 2019

    Article  Google Scholar 

  41. Pavithra, V., S. V. Sowmya, R. S. Rao, S. Patil, D. Augustine, et al. Tumor-associated collagen signatures: An insight. World J. Dent. 8:224–230, 2017

    Article  Google Scholar 

  42. Plodinec, M., and R. Y. H. Lim. Nanomechanical characterization of living mammary tissues by atomic force microscopy. Methods Mol. Biol. 1293:231–246, 2015

    Article  PubMed  Google Scholar 

  43. Plodinec, M., M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7:757–765, 2012

    Article  CAS  PubMed  Google Scholar 

  44. Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006

    Article  PubMed  PubMed Central  Google Scholar 

  45. Provenzano, P. P., D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:Article Number 11, 2008

    Article  Google Scholar 

  46. Rosenbluth, M. J., W. A. Lam, and D. A. Fletcher. Force microscopy of nonadherent cells: A comparison of leukemia cell deformability. Biophys. J. 90:2994–3003, 2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rubiano, A., D. Delitto, S. Han, M. Gerber, C. Galitz, et al. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater. 67:331–340, 2018

    Article  PubMed  Google Scholar 

  48. Sinkus, R., J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 45:1649–1664, 2000

    Article  CAS  PubMed  Google Scholar 

  49. Stylianopoulos, T., L. L. Munn, and R. K. Jain. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer. 4:292–319, 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stylianos-Vasileios, K. The Hertz model in AFM nanoindentation experiments: applications in biological samples and biomaterials. Micro Nanosyst. 10:11–22, 2018

    Article  Google Scholar 

  51. Stylianou, A. Atomic force microscopy for collagen-based nanobiomaterials. J. Nanomater. 2017:1–14, 2017

    Article  Google Scholar 

  52. Stylianou, A., V. Gkretsi, M. Louca, L. Zacharia, and T. Stylianopoulos. Collagen content and extracellular matrix stiffness remodels pancreatic fibroblasts cytoskeleton. J. R. Soc. Interface. 16:20190226, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stylianou A., V. Gkretsi, C.S. Patrickios, T. Stylianopoulos. Exploring the Nano-Surface of Collagenous and Other Fibrotic Tissues with AFM. In Fibrosis: Methods and Protocols, ed. L Rittié:453–89. New York, NY: Springer New York. 2017. Number of 453–89 pp.

  54. Stylianou, A., V. Gkretsi, and T. Stylianopoulos. Transforming growth factor-β modulates pancreatic cancer associated fibroblasts cell shape, stiffness and invasion. Biochim. Biophys. Acta. 1862:1537–1546, 2018

    Article  CAS  PubMed Central  Google Scholar 

  55. Stylianou, A., S. V. Kontomaris, E. Alexandratou, and C. Grant. Atomic Force Microscopy on biological materials related to pathological conditions. Scanning. 2019:8452851, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stylianou, A., M. Lekka, and T. Stylianopoulos. AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: From single cell to tissue level. Nanoscale. 10:20930–20945, 2018

    Article  CAS  PubMed  Google Scholar 

  57. Stylianou, A., and T. Stylianopoulos. Atomic Force Microscopy Probing of Cancer Cells and Tumor Microenvironment Components. BioNanoScience. 6:33–46, 2016

    Article  Google Scholar 

  58. Suresh, S. Nanomedicine: Elastic clues in cancer detection. Nat. Nanotechnol. 2:748–749, 2007

    Article  CAS  PubMed  Google Scholar 

  59. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3:413–438, 2007

    Article  PubMed  PubMed Central  Google Scholar 

  60. Swapnaa, B., and V. Santhosh Kumar. Personalized medicine—A novel approach in cancer therapy. Res. J. Pharmacy Technol. 10:341–5, 2017

    Article  Google Scholar 

  61. Tian, M., Y. Li, W. Liu, L. Jin, X. Jiang, et al. The nanomechanical signature of liver cancer tissues and its molecular origin. Nanoscale. 7:12998–13010, 2015

    Article  CAS  PubMed  Google Scholar 

  62. Voutouri, C., F. Mpekris, P. Papageorgis, A. D. Odysseos, and T. Stylianopoulos. Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0104717

    Article  PubMed  PubMed Central  Google Scholar 

  63. Voutouri, C., C. Polydorou, P. Papageorgis, V. Gkretsi, and T. Stylianopoulos. Hyaluronan-derived swelling of solid tumors, the contribution of collagen and cancer cells, and implications for cancer therapy. Neoplasia. 18:732–741, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Voutouri, C., and T. Stylianopoulos. Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness. PLoS ONE. 13:e0193801, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ward, K. A., W. I. Li, S. Zimmer, and T. Davis. Viscoelastic properties of transformed cells: Role in tumor cell progression and metastasis formation. Biorheology. 28:301–313, 1991

    Article  CAS  PubMed  Google Scholar 

  66. Wu, P.-H., D.R.-B. Aroush, A. Asnacios, W.-C. Chen, M. E. Dokukin, et al. A comparison of methods to assess cell mechanical properties. Nat. Methods. 15:491–498, 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou, Z. L., A. H. W. Ngan, B. Tang, and A. X. Wang. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. J. Mech. Behav. Biomed. Mater. 8:134–142, 2012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project received funding from the University of Cyprus, Advanced Post-doctoral Research Fellowship (PACAFingerPrints) to A.S. and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement nos. 863955 and 838414) to T.S.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All procedures performed in the studies were in accordance with ethical standards. all in vivo experiments were conducted in accordance with the animal welfare regulations and guidelines of the Republic of Cyprus and the European Union (European Directive 2010/63/EE and Cyprus Legislation for the protection and welfare of animals, Laws 1994–2013) under a license acquired and approved (No CY/EXP/PR.L2/2018, CY/EXP/PR.L14/2019, CY/EXP/PR.L15/2019) by the Cyprus Veterinary Services committee, the Cyprus national authority for monitoring animal research for all academic institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Stylianou or Triantafyllos Stylianopoulos.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 564 kb)

Supplementary file2 (TIF 788 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stylianou, A., Voutouri, C., Mpekris, F. et al. Pancreatic Cancer Presents Distinct Nanomechanical Properties During Progression. Ann Biomed Eng 51, 1602–1615 (2023). https://doi.org/10.1007/s10439-023-03168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03168-3

Keywords

Navigation