Skip to main content
Log in

Computational Investigation of Anastomosis Options of a Right-Heart Pump to Patient Specific Pulmonary Arteries

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patients with Fontan circulation have increased risk of heart failure, but are not always candidates for heart transplant, leading to the development of the subpulmonic Penn State Fontan Circulation Assist Device. The aim of this study was to use patient-specific computational fluid dynamics simulations to evaluate anastomosis options for implanting this device. Simulations were performed of the pre-surgical anatomy as well as four surgical options: a T-junction and three Y-grafts. Cases were evaluated based on several fluid-dynamic quantities. The impact of imbalanced left-right pulmonary flow distribution was also investigated. Results showed that a 12-mm Y-graft was the most energy efficient. However, an 8-mm graft showed more favorable wall shear stress distribution, indicating lower risk of thrombosis and endothelial damage. The 8-mm Y-grafts also showed a more balanced pulmonary flow split, and lower residence time, also indicating lower thrombosis risk. The relative performance of the surgical options was largely unchanged whether or not the pulmonary vascular resistance remained imbalanced post-implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akintoye, E., W. R. Miranda, G. R. Veldtman, H. M. Connolly, and A. C. Egbe. National trends in Fontan operation and in-hospital outcomes in the USA. Heart. 105(9):708–714, 2019.

    Article  PubMed  Google Scholar 

  2. Aliseda, A., V. K. Chivukula, P. McGah, A. R. Prisco, J. A. Beckman, G. J. M. Garcia, N. A. Mokadam, and C. Mahr. LVAD outflow graft angle and thrombosis risk. ASAIO J. 63(1):14–23, 1992.

    Article  Google Scholar 

  3. Caruso, M. V., V. Gramigna, M. Rossi, G. F. Serraino, A. Renzulli, and G. Fragomeni. A computational fluid dynamics comparison between different outflow graft anastomosis locations of left ventricular assist device (lvad) in a patient-specific aortic model. Numer. Methods Biomed. Eng. 31(2):e02700, 2014.

    Article  Google Scholar 

  4. Cysyk, J., J. B. Clark, R. Newswanger, C.-S. Jhun, J. Izer, H. Finicle, J. Reibson, B. Doxtater, W. Weiss, and G. Rosenberg. Chronic in-vivo test of a right heart replacement blood pump for failed fontan circulation. ASAIO J. 65:593–600, 2019.

    Article  PubMed  Google Scholar 

  5. Derk, G., H. Laks, R. Biniwale, S. Patel, K. De LaCruz, E. Mazor, R. Williams, J. Aldovinos, D. S. Levi, L. Reardon, and J. Aboulhosn. Novel techniques of mechanical circulatory support for the right heart and fontan circulation. Int. J. Cardiol. 176(3):828–832, 2014.

    Article  PubMed  Google Scholar 

  6. Diller, G.-P., A. Kempny, R. Alonso-Gonzalez, L. Swan, A. Uebing, W. Li, S. Babu-Narayan, S. J. Wort, K. Dimopoulos, and M. A. Gatzoulis. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation. 132(22):2118–2125, 2015.

    Article  PubMed  Google Scholar 

  7. Ebge, A. C., H. M. Connolly, W. R. Miranda, N. M. Ammash, D. J. Hagler, G. R. Veldtman, and B. A. Borlaug. Hemodynamics of fontan failure: the role of pulmonary vascular disease. Circulation. 10(12):e004515, 2017.

    Google Scholar 

  8. Fontan, F., and E. Baudet. Surgical repair of tricuspid atresia. Thorax. 26(3):240–248, 1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glor, F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. Thom, P. R. Verdonck, and X. Y. Xu. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann. Biomed. Eng. 31(2):142–151, 2003.

    Article  CAS  PubMed  Google Scholar 

  10. Haraguchi, H., and S. Teraoka. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J. Artif. Organs. 6(4):227–235, 2003.

    Article  Google Scholar 

  11. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118(1):74–82, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Hisch, E. M., J. G. Rogers, D. M. McNamara, D. O. Taylor, R. C. Starling, E. H. Blackstone, and J. D. Schold. Does survival on the heart transplant waiting list depend on the underlying heart disease? JACC-Heart Fail. 4(9):689–697, 2016.

    Article  Google Scholar 

  13. Imielski, B. R., R. A. Niebler, S. J. Kindel, and R. K. Woods. HeartWare ventricular assist device implantation in patients with fontan physiology. Artif. Organs. 41(1):40–46, 2017.

    Article  PubMed  Google Scholar 

  14. Itkin, M., D. A. Piccoli, G. Nadolski, J. Rychik, A. DeWitt, E. Pinto, J. Rome, and Y. Dori. Protein-losing enteropathy in patients with congenital heart disease. J. Am. Coll. Cardiol. 69(24):2929–2937, 2017.

    Article  CAS  PubMed  Google Scholar 

  15. Klimes, K., H. Abdul-Khaliq, S. Ovroutski, W. Hui, V. Alexi-Meskishvili, B. Spors, R. Hetzer, R. Felix, P. E. Lange, F. Berger, and M. Gutberlet. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac fontan: a magnetic resonance study. Clin. Res. Cardiol. 96(3):160–167, 2006.

    Article  PubMed  Google Scholar 

  16. Kotani, Y., D. Chetan, J. Zhu, A. Saedi, L. Zhao, L. Mertens, A. N. Redington, J. Coles, C. A. Caldarone, G. S. Van Arsdell, and O. Honjo. Fontan failure and death in contemporary fontan circulation: analysis from the last two decades. Ann. Thorac. Surg. 105(4):1240–1247, 2018.

    Article  PubMed  Google Scholar 

  17. Lacour-Gayet, F. G., C. J. Lanning, S. Stoica, R. Wang, B. A. Rech, S. Goldberg, and R. Shandas. An artificial right ventricle for failing fontan: in vitro and computational study. Ann. Thorac. Surg. 88(1):170–176, 2009.

    Article  PubMed  Google Scholar 

  18. Lorts, A., C. Villa, K. W. Riggs, J. Broderick, and D. L. S. Morales. First use of heartmate 3 in a failing fontan circulation. Ann. Thorac. Surg. 106(5):233–234, 2018.

    Article  Google Scholar 

  19. Mangani, L., M. Buchmayr, M. Darwish, and F. Moukalled. A fully coupled openfoam® solver for transient incompressible turbulent flows in ale formulation. Numer. Heat Transf. B. 71(4):313–326, 2017.

    Article  CAS  Google Scholar 

  20. Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac fontan baffle using computational fluid dynamics. J. Thorac. Cardiov. Surg. 137(2):394–403, 2009.

    Article  PubMed  Google Scholar 

  21. Mitchell, M. B., D. N. Campbell, D. Ivy, M. M. Boucek, H. M. Sondheimer, B. Pietra, B. B. Das, and J. R. Coll. Evidence of pulmonary vascular disease after heart transplantation for fontan circulation failure. J. Thorac. Cardiov. Surg. 128(5):693–702, 2004.

    Article  PubMed  Google Scholar 

  22. Monaco, J., A. Khanna, and P. Khazanie. Transplant and mechanical circulatory support in patients with adult congenital heart disease. Heart Fail. Rev. 25:671–683, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nicoud, F., and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3):183–200, 1999.

    Article  CAS  Google Scholar 

  24. Rayz, V. L., L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida, and D. Saloner. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36(11):1793–1804, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reza, M. M. S., and A. Arzani. A critical comparison of different residence time measures in aneurysms. J. Biomech. 88:122–129, 2019.

    Article  PubMed  Google Scholar 

  26. Riemer, R. K., G. Amir, S. H. Reichenbach, and O. Reinhartz. Mechanical support of a total cavopulmonary connection with and axial flow pump. J. Thorac. Cardiov. Surg. 130(2):351–354, 2005.

    Article  PubMed  Google Scholar 

  27. Roache, P. J. Perspective: a method for uniform reporting of grid refinement studies. J. Fluid Eng. 116(3):405–413, 1994.

    Article  Google Scholar 

  28. Rodefeld, M. D., B. Coats, T. Fisher, G. A. Giridharan, J. Chen, J. W. Brown, and S. H. Frankel. Cavopulmonary assist for the univentricular fontan circulation: von karman viscous impeller pump. J. Thorac. Cardiov. Eng. 140(3):529–536, 2010.

    Article  Google Scholar 

  29. Rodefeld, M. D., J. H. Boyd, C. D. Myers, B. J. LaLone, A. J. Bezruczko, A. W. Potter, and J. W. Brown. Cavopulmonary assist: circulatory support for the univentricular fontan circulation. Ann Thorac. Surg. 76(1):1911–1916, 2003.

    Article  PubMed  Google Scholar 

  30. Saouti, N., N. Westerhof, F. Helderman, J. T. Marcus, N. Stergiopulos, B. E. Westerhof, A. Boonstra, P. E. Postmus, and A. Vonk-Noordegraaf. RC time constant of single lung equals that of both lungs together: a study in chronic thromboembolic pulmonary hypertension. Am. J. Physiol.-Heart Circ. Physiol. 297(6):H2154–H2160, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Schiavazzi, D. E., A. Baretta, G. Pennati, T.-Y. Hsia, and A. L. Marsden. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int. J. Numer. Methods Biomed. 33(3):e02799, 2017.

    Google Scholar 

  32. Segura, A. M., I. Gregoric, R. Radovancevic, Z. T. Demirozu, L. M. Buja, and O. H. Frazier. Morphologic changes in the aortic wall media after support with a continuous-flow left ventricular assist device. J. Heart Lung Transplant. 32(11):1096–1100, 2013.

    Article  PubMed  Google Scholar 

  33. Soerensen, D. D., K. Pekkan, D. de Zélicourt, S. Sharma, K. Kanter, M. Fogel, and A. P. Yoganathan. Introduction of a new optimized total cavopulmonary connection. Ann. Thorac. Surg. 83(6):2182–2190, 2007.

    Article  PubMed  Google Scholar 

  34. Tang, E., Z. A. Wei, M. A. Fogel, A. Veneziani, and A. P. Yoganathan. Fluid-structure interaction simulation of an intra-atrial Fontan connection. Biology. 9(12):412, 2020.

    Article  PubMed Central  Google Scholar 

  35. Tang, E., Z. A. Wei, P. M. Trusty, K. K. Whitehead, L. Mirabella, A. Veneziani, M. A. Fogel, and A. P. Yoganathan. The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning. J. Biomech. 82:87–95, 2019.

    Article  PubMed  Google Scholar 

  36. Throckmorton, A. L., J. Y. Kapadia, S. G. Chopski, S. S. Bhavsar, W. B. Moskowitz, S. D. Gullquist, J. J. Gangemi, C. M. Haggerty, and A. P. Yoganathan. Numerical, hydraulic, and hemolytic evaluation of an intravascular axial flow blood pump to mechanically support fontan patients. Ann. Biomed. Eng. 39(1):324–336, 2011.

    Article  PubMed  Google Scholar 

  37. Throckmorton, A. L., K. K. Ballman, C. D. Myers, K. N. Litwak, S. H. Frankel, and M. D. Rodefeld. Mechanical cavopulmonary assist for the univentricular fontan circulation using a novel folding propeller blood pump. ASAIO J. 53(6):734–741, 2007.

    Article  PubMed  Google Scholar 

  38. Throckmorton, A. L., K. K. Ballman, C. D. Myers, S. H. Frankel, J. W. Brown, and M. D. Rodefeld. Performance of a 3-bladed propeller pump to provide cavopulmonary assist in the failing fontan circulation. Ann. Thorac. Surg. 86(4):1343–1347, 2008.

    Article  PubMed  Google Scholar 

  39. Throckmorton, A. L., S. Lopez-Isaza, E. A. Downs, S. G. Chopski, J. J. Gangemi, and W. Moskowitz. A viable therapeutic option: mechanical circulatory support of the failing fontan physiology. Pediatr. Cardiol. 34:1357–1365, 2013.

    Article  PubMed  Google Scholar 

  40. Trusty, P. M., T. C. Slesnick, Z. A. Wei, J. Rossignac, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. Fontan surgical planning: previous accomplishments, current challenges, and future directions. J. Cardiovasc. Transl. Res. 11(2):133–144, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trusty, P. M., Z. A. Wei, T. C. Slesnick, K. R. Kanter, T. L. Spray, M. A. Fogel, and A. P. Yoganathan. The first cohort of prospective Fontan surgical planning patients with follow-up data: how accurate is surgical planning? J. Thorac. Cardiovasc. Surg. 157(3):1146–1155, 2019.

    Article  PubMed  Google Scholar 

  42. van Bakel, T. M., K. D. Lau, J. Hirsch-Romano, S. Trimarchi, A. L. Dorfman, and C. A. Figueroa. Patient-specific modeling of hemodynamics: supporting surgical planning in a Fontan circulation correction. J. Cardiovasc. Transl. Res. 11(2):145–155, 2018.

    Article  PubMed  Google Scholar 

  43. Verheugt, C. L., C. S. P. M. Uiterwaal, E. T. van der Velde, F. J. Meijboom, P. G. Pieper, A. P. J. van Dijk, H. W. Vliegen, D. E. Grobbee, and B. J. M. Mulder. Mortality in adult congenital heart disease. Eur. Heart J. 31(10):1220–1229, 2010.

    Article  PubMed  Google Scholar 

  44. Wei, Z. A., C. Huddleston, P. M. Trusty, S. Singh-Gryzbon, M. A. Fogel, A. Veneziani, and A. P. Yoganathan. Analysis of inlet velocity profiles in numerical assessment of fontan hemodynamics. Ann. Biomed. Eng. 47(11):2258–2270, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wei, Z. A., M. Tree, P. M. Trusty, W. Wu, S. Singh-Gryzbon, and A. Yoganathan. The advantages of viscous dissipation rate over simplified power loss as a Fontan hemodynamic metric. Ann. Biomed. Eng. 46(3):404–416, 2018.

    Article  PubMed  Google Scholar 

  46. Wei, Z. A., P. M. Trusty, Y. Zhang, E. Tang, K. K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Impact of free-breathing phase-contrast MRI on decision-making in Fontan surgical planning. J. Cardiovasc. Transl. Res. 13(4):640–647, 2020.

    Article  CAS  PubMed  Google Scholar 

  47. Weller, H. G., G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6):620–631, 1998.

    Article  Google Scholar 

  48. Yang, L., T. Neuberger, and K. B. Manning. In vitro real-time magnetic resonance imaging for quantification of thrombosis. Magn. Reason. Mater. Phys. Biol. Med. 1–11, 2020.

  49. Yang, N., S. Deutsch, E. G. Paterson, and K. B. Manning. Numerical study of blood flow at the end-to-side anastomosis of a left ventricular assist device for adult patients. J. Biomed. Eng. 131(11):111005, 2009.

    Google Scholar 

  50. Yang, W., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the y-graft fontan procedure. J. Thorac. Cardiov. Surg. 149(1):247–255, 2015.

    Article  PubMed  Google Scholar 

  51. Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel y-graft fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiov. Surg. 143(5):1086–1097, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by U.S. Department of Defense W81XWH-16-1-0536-EXT. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1548562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Ethics declarations

Conflict of interest

William J. Weiss acknowledges intellectual property for the FCAD technology and potential for future licensing and commercialization. He also acknowledges royalties associated with energy transfer technology patents that may be connected to the FCAD technology in the future. All other authors acknowledge no conflicts of interest associated with the research presented.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobin, N., Good, B.C., Plasencia, J.D. et al. Computational Investigation of Anastomosis Options of a Right-Heart Pump to Patient Specific Pulmonary Arteries. Ann Biomed Eng 50, 929–940 (2022). https://doi.org/10.1007/s10439-022-02969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02969-2

Keywords

Navigation