Skip to main content
Log in

Numerical, Hydraulic, and Hemolytic Evaluation of an Intravascular Axial Flow Blood Pump to Mechanically Support Fontan Patients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Currently available mechanical circulatory support systems are limited for adolescent and adult patients with a Fontan physiology. To address this growing need, we are developing a collapsible, percutaneously-inserted, axial flow blood pump to support the cavopulmonary circulation in Fontan patients. During the first phase of development, the design and experimental evaluation of an axial flow blood pump was performed. We completed numerical modeling of the pump using computational fluid dynamics analysis, hydraulic testing of a plastic pump prototype, and blood bag experiments (n = 7) to measure the levels of hemolysis produced by the pump. Statistical analyses using regression were performed. The prototype with a 4-bladed impeller generated a pressure rise of 2–30 mmHg with a flow rate of 0.5–4 L/min for 3000–6000 RPM. A comparison of the experimental performance data to the numerical predictions demonstrated an excellent agreement with a maximum deviation being less than 6%. A linear increase in the plasma-free hemoglobin (pfHb) levels during the 6-h experiments was found, as desired. The maximum pfHb level was measured to be 21 mg/dL, and the average normalized index of hemolysis was determined to be 0.0097 g/100 L for all experiments. The hydraulic performance of the prototype and level of hemolysis are indicative of significant progress in the design of this blood pump. These results support the continued development of this intravascular pump as a bridge‐to‐transplant, bridge‐to‐recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction for Fontan patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Bhavsar, S. S., J. Y. Kapadia, S. G. Chopski, and A. L. Throckmorton. Intravascular mechanical cavopulmonary assistance for patients with failing Fontan physiology. Artif. Organs 33(11):977–987, 2009.

    Article  PubMed  Google Scholar 

  2. Bhavsar, S. S., W. B. Moskowitz, and A. L. Throckmorton. Interaction of an idealized cavopulmonary circulation with mechanical circulatory assist using an intravascular rotary blood pump. Artif. Organs (in press).

  3. Bludszuweit, C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19:590–596, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Chopski, S. G., E. A. Downs, S. S. Bhavsar, J. Y. Kapadia, C. M. Haggerty, A. P. Yoganathan, and A. L. Throckmorton. Particle image velocimetry measurements of an idealized total cavopulmonary connection with mechanical circulatory assistance in the inferior vena cava. In: 6th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion, Boston, MA, USA, May 6–8, 2010.

  5. Christianson, A., C. P. Howson, and B. Modell. March of Dimes Global Report on Birth Defects: The Hidden Toll of Dying and Disabled Children. White Plains, NY: March of Dimes Birth Defects Foundation, 2006.

    Google Scholar 

  6. de Leval, M. R., G. Dubini, F. Migiliavacca, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in the cavopulmonary connections. J. Thorac. Cardiovasc. Surg. 111:502–511, 1996.

    Article  PubMed  Google Scholar 

  7. Ensley, A. E., A. Ramuzat, T. M. Healy, C. Lucas, S. Sharma, R. Pettigrew, and A. P. Yoganathan. Fluid mechanic assessment of the total cavopulmoary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry. Ann. Biomed. Eng. 28:1172–1183, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Hosein, R., A. J. Clarke, S. P. McGuirk, M. Griselli, O. Stumper, J. V. De Giovanni, D. J. Barron, and W. J. Brawn. Factors influencing early and late outcome following the Fontan procedure in the current era. The ‘Two Commandment’s? Eur. J. Cardiothorac. Surg. 31:344–353, 2007.

    Article  PubMed  Google Scholar 

  9. Kapadia, J. Y., K. C. Pierce, A. K. Poupore, and A. L. Throckmorton. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist. ASAIO J. 56:17–23, 2010.

    Article  PubMed  Google Scholar 

  10. Karassik, I., W. C. Krutzsch, W. H. Fraser, and J. P. Messina. Pump Handbook (2nd ed.). New York: McGraw-Hill Book Company, 1986.

    Google Scholar 

  11. Kayatas, M., N. Ozdemir, H. Muderrisoglu, M. Ulucam, M. Turan, and N. Hizel. Comparison of the non-invasive methods estimating dry weight in hemodialysis patients. Renal Failure 28:217–222, 2006.

    Article  PubMed  Google Scholar 

  12. Khairy, P., S. M. Fernandez, J. E. Mayer, J. K. Triedman, E. P. Walsh, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92, 2008.

    Article  PubMed  Google Scholar 

  13. Lacour-Gayet, F. G., C. J. Lanning, S. Stoica, et al. An artificial right ventricle for failing Fontan: in vitro and computational study. Ann. Thorac. Surg. 88:170–176, 2009.

    Article  PubMed  Google Scholar 

  14. Malinauskas, R. A. Plasma hemoglobin measurement techniques for the in vitro evaluation of blood damage caused by medical devices. Artif. Organs 21(12):1255–1267, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Mueller, M. R., H. Schima, H. Engelhardt, A. Salat, D. B. Olsen, U. Losert, and E. Wolner. In vitro hematological testing of rotary blood pumps: remarks on standardization and data interpretation. Artif. Organs 17(2):103–110, 1993.

    Article  CAS  PubMed  Google Scholar 

  16. Nosé, Y. Design and development strategy for the rotary blood pump. Artif. Organs 22(6):438–446, 1998.

    Article  PubMed  Google Scholar 

  17. Paul, R., J. Apel, S. Klaus, F. Schugner, P. Schwindke, and H. Reul. Shear stress related blood damage in laminar Couette flow. Artif. Organs 27(6):517–529, 2003.

    Article  PubMed  Google Scholar 

  18. Pekkan, K., D. de Zélicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, and A. P. Yoganathan. Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study. Ann. Biomed. Eng. 33(3):284–300, 2005.

    Article  PubMed  Google Scholar 

  19. Riemer, K., G. Amir, S. H. Reichenbach, and O. Reinhartz. Mechanical support of total cavopulmonary connection with an axial flow pump. J. Thorac. Cardiovasc. Surg. 130:351–354, 2005.

    Article  PubMed  Google Scholar 

  20. Rodefeld, M., J. H. Boyd, B. J. LaLone, et al. Cavopulmonary assist: circulatory support for the univentricular Fontan circulation. Ann. Thorac. Surg. 76:1911–1916, 2003.

    Article  PubMed  Google Scholar 

  21. Rodefeld, M. D., B. Coats, T. Fisher, J. Brown, and S. H. Frankel. Cavopulmonary assist using a percutaneous, bi-conical, single impeller pump: a new spin for Fontan circulatory support. In: 89th Annual Meeting of the American Association for Thoracic Surgery, Boston, MA, USA, May 9–13, 2009.

  22. Ryu, K., T. M. Healy, A. E. Ensley, S. Sharma, C. Lucas, and A. P. Yoganathan. Importance of accurate geometry in the study of the total cavopulmonary connection: computational simulations and in vitro experiments. Ann. Biomed. Eng. 29:844–853, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Schlichting, H. Boundary-Layer Theory (7th ed.). New York: McGraw-Hill, Inc., 1979.

    Google Scholar 

  24. Song, X., A. L. Throckmorton, H. G. Wood, J. F. Antaki, and D. B. Olsen. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics. J. Fluid Eng. 126:410–418, 2004.

    Article  Google Scholar 

  25. Stepanoff, A. Centrifugal and Axial Flow Pumps (2nd ed.). New York: Krieger Publishing Company, 1957.

    Google Scholar 

  26. Throckmorton, A. L., K. K. Ballman, C. D. Myers, S. H. Frankel, J. W. Brown, and M. D. Rodefeld. Performance of an expandable propeller pump for cavopulmonary assist in a univentricular Fontan circulation. Ann. Thorac. Surg. 86:1343–1347, 2008.

    Article  PubMed  Google Scholar 

  27. Throckmorton, A. L., and S. G. Chopski. Pediatric circulatory support systems: current strategies and future directions. Biventricular and univentricular mechanical assistance. ASAIO J. 54:491–497, 2008.

    Article  PubMed  Google Scholar 

  28. Throckmorton, A. L., A. Untaroiu, P. E. Allaire, H. G. Wood, D. S. Lim, M. A. McCulloch, and D. B. Olsen. Numerical design and experimental hydraulic testing of an axial flow VAD for infants and children. ASAIO J. 53:754–761, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support for this work provided by the Thomas F. and Katie Jeffress Memorial Trust, Phase I and Phase II Award (Grant Number: J-874), American Heart Association Beginning Grant-in-Aid (Grant Number: 0865320E), National Science Foundation (Grant Number: EEC-0823383), 2009 Oak Ridge Associated Universities (ORAU) Ralph E. Powe Junior Faculty Enhancement Award, and the U.S. Department of Education GAANN Interdisciplinary Graduate Engineering Education and Research (I-GEEAR) fellowship awards (S. S. Bhavsar and S. G. Chopski), and the Mendel Family Diary Farm in Amelia County, VA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Throckmorton.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Throckmorton, A.L., Kapadia, J.Y., Chopski, S.G. et al. Numerical, Hydraulic, and Hemolytic Evaluation of an Intravascular Axial Flow Blood Pump to Mechanically Support Fontan Patients. Ann Biomed Eng 39, 324–336 (2011). https://doi.org/10.1007/s10439-010-0159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0159-3

Keywords

Navigation