Skip to main content

Advertisement

Log in

Particle Distribution in Embolotherapy, How Do They Get There? A Critical Review of the Factors Affecting Arterial Distribution of Embolic Particles

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Embolization has tremendously evolved in recent years and has expanded to treatment of a variety of pathologic processes. There has been emerging evidence that the level of arterial occlusion and the distribution of embolic particles may play an important role in the clinical outcome. This is a comprehensive literature review to identify variables that play important role in determination of level of occlusion of blood vessels and distribution of embolic particles. The literature searches between 1996 to 2020 through PubMed and Ovid-MEDLINE yielded over 1030 articles of which 30 studies providing details on the level of occlusion are reviewed here. We divided the playing factors into characteristics of the particles, solution/injection and vascular bed. Accordingly, particle size, type and aggregation, compressibility/deformability, and biodegradability are categorized as the factors involving particles’ behavioral nature. Infusion rate and concentration/dilution of the medium are related to the carrying solution. Hemodynamics and the arterial resistance are characteristics of the vascular bed that also play an important role in the distribution of embolic particles. Understanding and predicting the level of embolization is a complex multi-factor problem that requires more evidence, warranting further randomized controlled trials, and powered human and animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

PVA:

Polyvinyl alcohol

TGMS:

Trisacryl gelatin microspheres

PVAMSs:

PVA microspheres

AVMs:

Arteriovenous Malformations

UAE:

Uterine Artery Embolization

References

  1. Amili, O., J. Golzarian, and F. Coletti. in vitro study of particle transport in successively bifurcating vessels. Ann. Biomed. Eng. 47(11):2271–2283, 2019.

    Article  PubMed  Google Scholar 

  2. Andrews, R. T., and C. A. Binkert. Relative rates of blood flow reduction during transcatheter arterial embolization with tris-acryl gelatin microspheres or polyvinyl alcohol: quantitative comparison in a swine model. J. Vasc. Interv. Radiol. 14(10):1311–1316, 2003.

    Article  PubMed  Google Scholar 

  3. Aramburu, J., R. Antón, A. Rivas, J. C. Ramos, B. Sangro, and J. I. Bilbao. Numerical investigation of liver radioembolization via computational particle–hemodynamics: the role of the microcatheter distal direction and microsphere injection point and velocity. J. Biomech. 49(15):3714–3721, 2016.

    Article  PubMed  Google Scholar 

  4. Aramburu, J., R. Antón, A. Rivas, J. C. Ramos, B. Sangro, and J. I. Bilbao. Computational assessment of the effects of the catheter type on particle–hemodynamics during liver radioembolization. J. Biomech. 49(15):3705–3713, 2016.

    Article  PubMed  Google Scholar 

  5. Arnold, M. J., J. J Keung, and B. McCarragher. Interventional Radiology: Indications and Best Practices: American Academy of Family Physicians; 2019 [Available from: https://www.aafp.org/afp/2019/0501/p547.html.

  6. Beaujeux, R., A. Laurent, J. Hodes, M. Wassef, and J. J. Merland. Calibrated sphere embolization of craniofacial tumors and arteriovenous malformations. Neuroradiology. 16:562–564, 1991.

    Google Scholar 

  7. Bendszus, M., R. Klein, R. Burger, M. Warmuth-Metz, E. Hofmann, and L. Solymosi. Efficacy of trisacryl gelatin microspheres versus polyvinyl alcohol particles in the preoperative embolization of meningiomas. AJNR. 21(2):255–261, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bilbao, J. I., E. de Luis, J. A. G. de Jalón, A. de Martino, M. D. Lozano, A. M. de la Cuesta, et al. Comparative study of four different spherical embolic particles in an animal model: a morphologic and histologic evaluation. J. Vasc. Intervent. Radiol. 19(11):1625–1638, 2008.

    Article  Google Scholar 

  9. Brown, A. C., and C. E. Ray. Anterior spinal cord infarction following bronchial artery embolization. Semin. Interv. Radiol. 29(3):241–244, 2012.

    Article  Google Scholar 

  10. Burns, P. B., R. J. Rohrich, and K. C. Chung. The levels of evidence and their role in evidence-based medicine. Plastic Reconstr. Surg. 128(1):305–310, 2011.

    Article  CAS  Google Scholar 

  11. Bushi, D., Y. Grad, S. Einav, O. Yodfat, B. Nishri, and D. Tanne. Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model. Stroke. 36(12):2696–2700, 2005.

    Article  PubMed  Google Scholar 

  12. Caine, M., M. S. McCafferty, S. McGhee, P. Garcia, W. M. Mullett, X. Zhang, et al. Impact of Yttrium-90 microsphere density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model. J. Vasc. Interv. Radiol. 28(2):260–8.e2, 2017.

    Article  PubMed  Google Scholar 

  13. Childress, E. M., and C. Kleinstreuer. Impact of fluid-structure interaction on direct tumor-targeting in a representative hepatic artery system. Ann. Biomed. Eng. 42(3):461–474, 2014.

    Article  PubMed  Google Scholar 

  14. Choe, D. H., M. H. Han, G. H. Kang, K. M. Yeon, and M. C. Han. An experimental study of embolic effect according to infusion rate and concentration of suspension in transarterial particulate embolization. Invest. Radiol. 32(5):260–267, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Chua, G. C., M. Wilsher, M. P. Young, I. Manyonda, R. Morgan, and A. M. Belli. Comparison of particle penetration with non-spherical polyvinyl alcohol versus trisacryl gelatin microspheres in women undergoing premyomectomy uterine artery embolization. Clin. Radiol. 60(1):116–122, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Chung, E. M., J. P. Hague, M. A. Chanrion, K. V. Ramnarine, E. Katsogridakis, and D. H. Evans. Embolus trajectory through a physical replica of the major cerebral arteries. Stroke. 41(4):647–652, 2010.

    Article  PubMed  Google Scholar 

  17. Das, R., A. Wale, S. A. Renani, L. Ratnam, L. Mailli, J. Y. Chun, et al. Randomised controlled trial of particles used in uterine fibRoid Embolisation (PURE): non-spherical polyvinyl alcohol versus calibrated microspheres. Cardiovasc. Interv. Radiol. 45(2):207–215, 2022.

    Article  Google Scholar 

  18. Derdeyn, C. P., V. B. Graves, M. S. Salamat, and A. Rappe. Collagen-coated acrylic microspheres for embolotherapy: in vivo and in vitro characteristics. AJNR Am. J. Neuroradiol. 18(4):647–653, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Golzarian, J., E. Lang, D. Hovsepian, T. Kroncke, L. Lampmann, P. Lohle, et al. Higher Rate of partial devascularization and clinical failure after uterine artery embolization for fibroids with spherical polyvinyl alcohol. Cardiovasc. Interv. Radiol. 29(1):1–3, 2006.

    Article  Google Scholar 

  20. Golzarian, J., and L. Weng. Particle embolization: factors affecting arterial distribution. J. Vasc. Interv. Radiol. 25(11):1773–1774, 2014.

    Article  PubMed  Google Scholar 

  21. Hidaka, K., L. Moine, G. Collin, D. Labarre, J. L. Grossiord, N. Huang, et al. Elasticity and viscoelasticity of embolization microspheres. J. Mech. Behav. Biomed. Mater. 4(8):2161–2167, 2011.

    Article  CAS  PubMed  Google Scholar 

  22. Hu, J., H. Albadawi, B. W. Chong, A. R. Deipolyi, R. A. Sheth, A. Khademhosseini, et al. Advances in biomaterials and technologies for vascular embolization. Adv. Mater. 31(33):1901071, 2019.

    Article  CAS  Google Scholar 

  23. Hwang, J. H., S. W. Park, I. S. Chang, S. I. Jung, H. J. Jeon, Y. S. Lho, et al. Comparison of nonspherical polyvinyl alcohol particles and microspheres for prostatic arterial embolization in patients with benign prostatic hyperplasia. BioMed Res. Int. 2017:8732351, 2017.

    PubMed  PubMed Central  Google Scholar 

  24. Jiang, W., Z. Shen, H. Luo, X. Hu, and X. Zhu. Comparison of polyvinyl alcohol and tris-acryl gelatin microsphere materials in embolization for symptomatic leiomyomas: a systematic review. Minim. Invasive Therapy Allied Technol. 25(6):289–300, 2016.

    Article  Google Scholar 

  25. Kennedy, A. S., C. Kleinstreuer, C. A. Basciano, and W. A. Dezarn. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J. Radiat. Oncol. Biol. Phys. 76(2):631–637, 2010.

    Article  CAS  PubMed  Google Scholar 

  26. Keussen, I., J. Bengtsson, D. Gavier-Widén, and E. Karlstam. Uterine artery embolization in a sheep model: biodegradable versus non-degradable microspheres. Acta radiologica. 59(10):1210–1217, 2018.

    Article  PubMed  Google Scholar 

  27. Kishimoto, K., K. Osuga, N. Maeda, Y. Higashi, A. Hayashi, Y. Hori, et al. Embolic effects of transcatheter mesenteric arterial embolization with microspheres on the small bowel in a dog model. J. Vasc. Interv. Radiol. 25(11):1767–1773, 2014.

    Article  PubMed  Google Scholar 

  28. Laurent, A., M. Wassef, R. Chapot, Y. Wang, E. Houdart, L. Feng, et al. Partition of calibrated tris-acryl gelatin microspheres in the arterial vasculature of embolized nasopharyngeal angiofibromas and paragangliomas. Journal of Vascular and Interventional Radiology 16(4):507–513, 2005.

    Article  PubMed  Google Scholar 

  29. Laurent, A., M. Wassef, J. Namur, J. Martal, D. Labarre, and J. P. Pelage. Recanalization and particle exclusion after embolization of uterine arteries in sheep: a long-term study. Fertil. Steril. 91(3):884–892, 2009.

    Article  PubMed  Google Scholar 

  30. Laurent, A., M. Wassef, J. P. Saint Maurice, J. Namur, J. P. Pelage, A. Seron, et al. Arterial distribution of calibrated tris-acryl gelatin and polyvinyl alcohol microspheres in a sheep kidney model. Invest. Radiol. 41(1):8–14, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Lewis, A. L., C. Adams, W. Busby, S. A. Jones, L. C. Wolfenden, S. W. Leppard, et al. Comparative in vitro evaluation of microspherical embolisation agents. J. Mater. Sci. Mater. Med. 17(12):1193–1204, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Maluccio, M. A., A. M. Covey, L. B. Porat, J. Schubert, L. A. Brody, C. T. Sofocleous, et al. Transcatheter arterial embolization with only particles for the treatment of unresectable hepatocellular carcinoma. J. Vasc Interv. Radiol. 19(6):862–869, 2008.

    Article  PubMed  Google Scholar 

  33. McLucas, B., L. Adler, and R. Perrella. Uterine fibroid embolization: nonsurgical treatment for symptomatic fibroids11No competing interests declared. J. Am Coll. Surg. 192(1):95–105, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. McWilliams, J. P., T. A. Bilhim, F. C. Carnevale, S. Bhatia, A. J. Isaacson, S. Bagla, et al. Society of Interventional Radiology Multisociety Consensus Position Statement on Prostatic Artery Embolization for Treatment of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: From the Society of Interventional Radiology, the Cardiovascular and Interventional Radiological Society of Europe, Société Française de Radiologie, and the British Society of Interventional Radiology: Endorsed by the Asia Pacific Society of Cardiovascular and Interventional Radiology, Canadian Association for Interventional Radiology, Chinese College of Interventionalists, Interventional Radiology Society of Australasia, Japanese Society of Interventional Radiology, and Korean Society of Interventional Radiology. J Vasc Interv. Radiol. 30(5):627–37.e1, 2019.

    Article  PubMed  Google Scholar 

  35. Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 339:2535, 2009.

    Article  Google Scholar 

  36. Morishita, A., J. Tani, T. Nomura, K. Takuma, M. Nakahara, K. Oura, et al. Efficacy of combined therapy with drug-eluting beads-transcatheter arterial chemoembolization followed by conventional transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a multi-Center study. Cancer. 13(18):4605, 2021.

    Article  CAS  Google Scholar 

  37. Patel, T. Y., D. M. Hovsepian, and J. R. Duncan. Measurement of blood flow before and after embolization with use of fluorescent microspheres in an animal model. J. Vasc. Interv. Radiol. 17(1):103–111, 2006.

    Article  PubMed  Google Scholar 

  38. Peixoto, L. S., F. M. Silva, M. A. L. Niemeyer, G. Espinosa, P. A. Melo, M. Nele, et al. Synthesis of Poly(Vinyl Alcohol) and/or Poly(Vinyl Acetate) Particles with Spherical Morphology and Core-Shell Structure and its Use in Vascular Embolization. Macromol. Symp. 243(1):190–199, 2006.

    Article  CAS  Google Scholar 

  39. Pelage, J. P., A. Laurent, M. Wassef, M. Bonneau, D. Germain, R. Rymer, et al. Uterine artery embolization in sheep: comparison of acute effects with polyvinyl alcohol particles and calibrated microspheres. Radiology. 224(2):436–445, 2002.

    Article  PubMed  Google Scholar 

  40. Senturk, C., V. Cakir, K. Yorukoglu, O. Yilmaz, and A. Y. Goktay. Looking for the ideal particle: an experimental embolization study. Cardiovasc. Interv. Radiol. 33(2):336–345, 2010.

    Article  Google Scholar 

  41. Sheth, R. A., S. Sabir, S. Krishnamurthy, R. K. Avery, Y. S. Zhang, A. Khademhosseini, et al. Endovascular embolization by transcatheter delivery of particles: past, present, and future. J. Funct. Biomater. 8(2):14, 2017.

    Article  CAS  Google Scholar 

  42. Siskin, G. P., K. Dowling, R. Virmani, R. Jones, and D. Todd. Pathologic evaluation of a spherical polyvinyl alcohol embolic agent in a porcine renal model. J. Vasc. Interv. Radiol. 14(1):89–98, 2003.

    Article  PubMed  Google Scholar 

  43. Sommer, C. M., T. D. Do, C. L. Schlett, P. Flechsig, T. L. Gockner, A. Kuthning, et al. In vivo characterization of a new type of biodegradable starch microsphere for transarterial embolization. J. Biomater. Appl. 32(7):932–944, 2018.

    Article  CAS  PubMed  Google Scholar 

  44. Stampfl, S., N. Bellemann, U. Stampfl, C. M. Sommer, H. Thierjung, R. Lopez-Benitez, et al. Arterial distribution characteristics of Embozene particles and comparison with other spherical embolic agents in the porcine acute embolization model. J. Vasc. Interv. Radiol. 20(12):1597–1607, 2009.

    Article  PubMed  Google Scholar 

  45. Torres, D., N. V. Costa, J. Pisco, L. C. Pinheiro, A. G. Oliveira, and T. Bilhim. Prostatic artery embolization for benign prostatic hyperplasia: prospective randomized trial of 100–300 μm versus 300–500 μm versus 100- to 300-μm + 300- to 500-μm embospheres. J. Vasc. Interv. Radiol. 30(5):638–644, 2019.

    Article  PubMed  Google Scholar 

  46. van den Hoven, A. F., M. G. E. H. Lam, S. Jernigan, M. A. A. J. van den Bosch, and G. D. Buckner. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. J. Exp. Clin. Cancer Res. 34(1):74, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Verret, V., S. H. Ghegediban, M. Wassef, J. P. Pelage, J. Golzarian, and A. Laurent. The arterial distribution of Embozene and Embosphere microspheres in sheep kidney and uterus embolization models. J. Vasc. Interv. Radiol. 22(2):220–228, 2011.

    Article  PubMed  Google Scholar 

  48. Weiss, C. R., Y. Fu, C. Beh, C. Hu, D. Kedziorek, E.-J. Shin, et al. Bariatric arterial embolization with calibrated radiopaque microspheres and an Antireflux catheter suppresses weight gain and appetite-stimulating hormones in swine. J. Vasc. Interv. Radiol. 31(9):1483–1491, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Weng, L., M. Rusten, R. Talaie, M. Hairani, N. K. Rosener, and J. Golzarian. Calibrated bioresorbable microspheres: a preliminary study on the level of occlusion and arterial distribution in a rabbit kidney model. J. Vasc. Interv. Radiol. 24(10):1567–1575, 2013.

    Article  PubMed  Google Scholar 

  50. Wong, Y. S., A. V. Salvekar, K. D. Zhuang, H. Liu, W. R. Birch, K. H. Tay, et al. Bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. Biomaterials. 102:98–106, 2016.

    Article  CAS  PubMed  Google Scholar 

  51. Young, S., N. Rostambeigi, and J. Golzarian. The common but complicated tool: review of embolic materials for the interventional radiologist. Semin. Intervent. Radiol. 38(5):535–541, 2021.

    Article  PubMed  Google Scholar 

  52. Yu, S. C., I. Lok, S. S. Ho, M. M. Tong, and J. W. Hui. Comparison of clinical outcomes of tris-acryl microspheres versus polyvinyl alcohol microspheres for uterine artery embolization for leiomyomas: results of a randomized trial. J. Vasc. Interv. Radiol. 22(9):1229–1235, 2011.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooya Torkian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study consent for publication is not required.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaie, R., Torkian, P., Amili, O. et al. Particle Distribution in Embolotherapy, How Do They Get There? A Critical Review of the Factors Affecting Arterial Distribution of Embolic Particles. Ann Biomed Eng 50, 885–897 (2022). https://doi.org/10.1007/s10439-022-02965-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02965-6

Keywords

Navigation