Skip to main content
Log in

Embryonic Mesenchymal Multipotent Cell Differentiation on Electrospun Biodegradable Poly(ester amide) Scaffolds for Model Vascular Tissue Fabrication

  • Bioengineering and Enabling Technologies
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vascular differentiation of stem cells and matrix component production on electrospun tubular scaffolds is desirable to engineer blood vessels. The mouse embryonic multipotent mesenchymal progenitor cell line (10T1/2) provides an excellent tool for tissue engineering since it shares similar differentiation characteristics with mesenchymal stem cells. Although 10T1/2 cells have been widely studied in the context of skeletal tissue engineering, their differentiation to smooth muscle lineage is less known. In this study, we fabricated tubular electrospun poly(ester amide) (PEA) fibers from l-phenylalanine-derived biodegradable biomaterials and investigated cell-scaffold interactions as well as their differentiation into vascular smooth muscle cell and subsequent elastin expression. PEA scaffolds fabricated under different collector speeds did not have an impact on the fiber directionality/orientation. 10T1/2 cytocompatibility and proliferation studies showed that PEA fibres were not cytotoxic and were able to support proliferation for 14 days. Furthermore, cells were observed infiltrating the fibrous scaffolds despite the small pore sizes (~ 5 µm). Vascular differentiation studies of 10T1/2 cells using qPCR, Western blot, and immunostaining showed a TGFβ1-induced upregulation of vascular smooth muscle cell (VSMC)-specific markers smooth muscle alpha-actin (SM-α–actin) and smooth muscle myosin heavy chain (SM-MHC). Differentiated 10T1/2 cells produced both elastin and fibrillin-1 suggesting the potential of fibrous PEA scaffolds to fabricate model vascular tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Afifi, A. M., H. Yamane, and Y. Kimura. Effect of polymer molecular weight on the electrospinning of polylactides in entangled and aligned fiber forms. Sen-I Gakkaishi 66(2):35–42, 2010.

    CAS  Google Scholar 

  2. Aghajanpoor, M., S. Hashemi-Najafabadi, M. Baghaban-Eslaminejad, F. Bagheri, S. Mohammad Mousavi, and F. Azam Sayyahpour. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication. J. Biomed. Mater. Res. A 105(7):1887–1899, 2017.

    CAS  PubMed  Google Scholar 

  3. Arras, M. M., C. Grasl, H. Bergmeister, and H. Schima. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci. Technol. Adv. Mater. 13(3):035008, 2012.

    PubMed  PubMed Central  Google Scholar 

  4. Atkins, K. M., D. Lopez, D. K. Knight, K. Mequanint, and E. R. Gillies. A Versatile approach for the syntheses of poly(ester amide)s with Pendant functional groups. J. Polym. Sci. Part A 47(15):3757–3772, 2009.

    CAS  Google Scholar 

  5. Awad, N. K., H. Niu, U. Ali, S. Morsi, and T. Lin. Electrospun fibrous scaffolds for small-diameter blood vessels: a review. Membranes (Basel) 8(1):15, 2018.

    Google Scholar 

  6. Badrossamay, M. R., K. Balachandran, A. K. Capulli, H. M. Golecki, A. Agarwal, J. A. Goss, H. Kim, K. Shin, and K. K. Parker. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 35(10):3188–3197, 2014.

    CAS  PubMed  Google Scholar 

  7. Bajpai, V. K., and S. T. Andreadis. Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng. Part B 18(5):405–425, 2012.

    CAS  Google Scholar 

  8. Basu, A., K. R. Kunduru, J. Katzhendler, and A. J. Domb. Poly(alpha-hydroxy acid)s and poly(alpha-hydroxy acid-co-alpha-amino acid)s derived from amino acid. Adv. Drug Deliv. Rev. 107:82–96, 2016.

    CAS  PubMed  Google Scholar 

  9. Dahan, N., U. Sarig, T. Bronshtein, L. Baruch, T. Karram, A. Hoffman, and M. Machluf. Dynamic autologous reendothelialization of Small-caliber arterial extracellular matrix: a preclinical large animal study. Tissue Eng. Part A 23(1–2):69–79, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dahan, N., G. Zarbiv, U. Sarig, T. Karram, A. Hoffman, and M. Machluf. Porcine small diameter arterial extracellular matrix supports endothelium formation and media remodeling forming a promising vascular engineered biograft. Tissue Eng. Part A 18(3–4):411–422, 2012.

    CAS  PubMed  Google Scholar 

  11. Eoh, J. H., N. Shen, J. A. Burke, S. Hinderer, Z. Xia, K. Schenke-Layland, and S. Gerecht. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater. 52:49–59, 2017.

    CAS  PubMed  Google Scholar 

  12. Grenier, S., M. Sandig, D. W. Holdsworth, and K. Mequanint. Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds. J. Biomed. Mater. Res. A 89(2):293–303, 2009.

    PubMed  Google Scholar 

  13. Grenier, S., M. Sandig, and K. Mequanint. Smooth muscle alpha-actin and calponin expression and extracellular matrix production of human coronary artery smooth muscle cells in 3D scaffolds. Tissue Eng. Part A 15(10):3001–3011, 2009.

    CAS  PubMed  Google Scholar 

  14. Hao, Y. J., M. Y. Chen, J. B. Zhao, Z. Y. Zhang, and W. T. Yang. Synthesis and properties of polyesteramides having short nylon-610 segments in the main chains through polycondensation and chain extension. Ind. Eng. Chem. Res. 52(19):6410–6421, 2013.

    CAS  Google Scholar 

  15. Hirschi, K. K., S. A. Rohovsky, and P. A. D’Amore. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141(3):805–814, 1998.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, H., T. J. Song, X. Li, L. Hu, Q. He, M. Liu, M. D. Lane, and Q. Q. Tang. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U. S. A. 106(31):12670–12675, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, J. I., T. I. Hwang, L. E. Aguilar, C. H. Park, and C. S. Kim. A controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci. Rep. 6:23761, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Knight, D. K., E. R. Gillies, and K. Mequanint. Strategies in functional poly(ester amide) syntheses to study human coronary artery smooth muscle cell interactions. Biomacromolecules 12(7):2475–2487, 2011.

    CAS  PubMed  Google Scholar 

  19. Knight, D. K., E. R. Gillies, and K. Mequanint. Biomimetic l-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering. Acta Biomater. 10(8):3484–3496, 2014.

    CAS  PubMed  Google Scholar 

  20. Krawiec, J. T., and D. A. Vorp. Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33(12):3388–3400, 2012.

    CAS  PubMed  Google Scholar 

  21. Lin, S., and K. Mequanint. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues. Acta Biomater. 59:200–209, 2017.

    CAS  PubMed  Google Scholar 

  22. Lin, L., Q. Qiu, N. Zhou, W. Dong, J. Shen, W. Jiang, J. Fang, J. Hao, and Z. Hu. Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep. 49(3):179–184, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, S., M. Sandig, and K. Mequanint. Three-dimensional topography of synthetic scaffolds induces elastin synthesis by human coronary artery smooth muscle cells. Tissue Eng. Part A 17(11–12):1561–1571, 2011.

    CAS  PubMed  Google Scholar 

  24. Medeiros, E. S., L. H. C. Mattoso, E. N. Ito, K. S. Gregorski, G. H. Robertson, R. D. Offeman, D. F. Wood, W. J. Orts, and S. H. Imam. Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J. Biobased Mater. Bioenergy 2(3):231–242, 2008.

    Google Scholar 

  25. Motamedi, A. S., H. Mirzadeh, F. Hajiesmaeilbaigi, S. Bagheri-Khoulenjani, and M. Shokrgozar. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog. Biomater. 6(3):113–123, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oida, T., and H. L. Weiner. Depletion of TGF-beta from fetal bovine serum. J. Immunol. Methods 362(1–2):195–198, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel, A., B. Fine, M. Sandig, and K. Mequanint. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc. Res. 71(1):40–49, 2006.

    CAS  PubMed  Google Scholar 

  28. Said, S. S., C. O’Neil, H. Yin, Z. Nong, J. G. Pickering, and K. Mequanint. Concurrent and sustained delivery of FGF2 and FGF9 from electrospun poly(ester amide) fibrous mats for therapeutic angiogenesis. Tissue Eng. Part A 22(7–8):584–596, 2016.

    CAS  PubMed  Google Scholar 

  29. Said, S. S., J. G. Pickering, and K. Mequanint. Controlled delivery of fibroblast growth factor-9 from biodegradable poly(ester amide) fibers for building functional neovasculature. Pharm. Res. 31(12):3335–3347, 2014.

    CAS  PubMed  Google Scholar 

  30. Sensini, A., C. Gualandi, L. Cristofolini, G. Tozzi, M. Dicarlo, G. Teti, M. Mattioli-Belmonte, and M. Letizia Focarete. Biofabrication of bundles of poly(lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon. Biofabrication 9(1):015025, 2017.

    PubMed  Google Scholar 

  31. Sensini, A., C. Gualandi, A. Zucchelli, L. A. Boyle, A. P. Kao, C. Reilly, G. Tozzi, L. Cristofolini, and M. L. Focarete. Tendon fascicle-inspired nanofibrous scaffold of polylactic acid/collagen with enhanced 3D-structure and biomechanical properties. Sci. Rep. 8(1):17167, 2018.

    PubMed  PubMed Central  Google Scholar 

  32. Soffer, L., X. Wang, X. Zhang, J. Kluge, L. Dorfmann, D. L. Kaplan, and G. Leisk. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J. Biomater. Sci. Polym. Ed. 19(5):653–664, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Song, H. G., R. T. Rumma, C. K. Ozaki, E. R. Edelman, and C. S. Chen. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22(3):340–354, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Srinath, D., S. Lin, D. K. Knight, A. S. Rizkalla, and K. Mequanint. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. J. Tissue Eng. Regen. Med. 8(7):578–588, 2014.

    CAS  PubMed  Google Scholar 

  35. Suga, K., M. Saitoh, S. Fukushima, K. Takahashi, H. Nara, S. Yasuda, and K. Miyata. Interleukin-11 induces osteoblast differentiation and acts synergistically with bone morphogenetic protein-2 in C3H10T1/2 cells. J. Interferon Cytokine Res. 21(9):695–707, 2001.

    CAS  PubMed  Google Scholar 

  36. Sung, H. J., C. Meredith, C. Johnson, and Z. S. Galis. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25(26):5735–5742, 2004.

    CAS  PubMed  Google Scholar 

  37. Tang, Q. Q., T. C. Otto, and M. D. Lane. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U. S. A. 101(26):9607–9611, 2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Theron, J. P., J. H. Knoetze, R. D. Sanderson, R. Hunter, K. Mequanint, T. Franz, P. Zilla, and D. Bezuidenhout. Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater. 6(7):2434–2447, 2010.

    CAS  PubMed  Google Scholar 

  39. Thottappillil, N., and P. D. Nair. Scaffolds in vascular regeneration: current status. Vasc. Health Risk Manag. 11:79–91, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Upson, S. J., T. O’Haire, S. J. Russell, K. Dalgarno, and A. M. Ferreira. Centrifugally spun PHBV micro and nanofibres. Mater. Sci. Eng C 76:190–195, 2017.

    CAS  Google Scholar 

  41. Wang, Y., H. Shi, J. Qiao, Y. Tian, M. Wu, W. Zhang, Y. Lin, Z. Niu, and Y. Huang. Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. ACS Appl. Mater. Interfaces. 6(4):2958–2962, 2014.

    CAS  PubMed  Google Scholar 

  42. Wang, M., Y. Su, H. Sun, T. Wang, G. Yan, X. Ran, F. Wang, T. Cheng, and Z. Zou. Induced endothelial differentiation of cells from a murine embryonic mesenchymal cell line C3H/10T1/2 by angiogenic factors in vitro. Differentiation 79(1):21–30, 2010.

    CAS  PubMed  Google Scholar 

  43. Wang, K., M. Zhu, T. Li, W. Zheng, L. Li, M. Xu, Q. Zhao, D. Kong, and L. Wang. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts. J. Biomed. Nanotechnol. 10(8):1588–1598, 2014.

    CAS  PubMed  Google Scholar 

  44. Winnacker, M., and B. Rieger. Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym. Chem. 7(46):7039–7046, 2016.

    CAS  Google Scholar 

  45. Wu, J., and Y. Hong. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact. Mater. 1(1):56–64, 2016.

    PubMed  PubMed Central  Google Scholar 

  46. Xie, C., R. P. Ritchie, H. Huang, J. Zhang, and Y. E. Chen. Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler. Thromb. Vasc. Biol. 31(7):1485–1494, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yanagisawa, H., and E. C. Davis. Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int. J. Biochem. Cell Biol. 42(7):1084–1093, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, J., A. R. Lee, W. H. Lin, C. W. Lin, Y. K. Wu, and W. B. Tsai. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng. Part A 20(13–14):1896–1907, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, L., G. Li, K. M. Chan, Y. Wang, and P. F. Tang. Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2. Calcif. Tissue Int. 84(1):56–64, 2009.

    CAS  PubMed  Google Scholar 

  50. Zhao, J. H., H. Y. Liu, and L. Xu. Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method. Mater. Des. 90:1–6, 2016.

    CAS  Google Scholar 

  51. Zhu, Y., Y. Cao, J. Pan, and Y. Liu. Macro-alignment of electrospun fibers for vascular tissue engineering. J. Biomed. Mater. Res. B 92(2):508–516, 2010.

    Google Scholar 

Download references

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2018-06310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kibret Mequanint.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiros, S., Lin, S., Xing, M. et al. Embryonic Mesenchymal Multipotent Cell Differentiation on Electrospun Biodegradable Poly(ester amide) Scaffolds for Model Vascular Tissue Fabrication. Ann Biomed Eng 48, 980–991 (2020). https://doi.org/10.1007/s10439-019-02276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02276-3

Keywords

Navigation