Skip to main content

Advertisement

Log in

In Vitro Models for Studying Transport Across Epithelial Tissue Barriers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Epithelial barriers are the body’s natural defense system to regulating passage from one domain to another. In our efforts to understand what can and cannot cross these barriers, models have emerged as a reductionist approach to rigorously study and investigate this question. In particular, in vitro tissue models have become prominent as there is an increased exploration of understanding biological molecular transport. Herein, we introduce the pertinent physiology, then discuss recent studies and approaches for building models of five epithelial tissues: skin, the gastrointestinal tract, the lungs, the blood–brain barrier, and the placenta. In particular, we evaluated literature from the past 5 years utilizing a tissue model to evaluate molecular transport. We then compare physiology of these tissues and discuss similarities in approaches, across tissues, to validate these models. We conclude with a summary of the approaches of growing interest across multiple tissues and an outlook on future steps to improve these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

(Adapted from Klein et al., Part Fibre Toxicol, 2013).

Figure 5

(Adapted from Prabhakarpandian, et al., Lab Chip, 2013).

Figure 6

Similar content being viewed by others

References

  1. Abaci, H. E., Z. Guo, Y. Doucet, J. Jacków, and A. Christiano. Next generation human skin constructs as advanced tools for drug development. Exp. Biol. Med. 242:1657–1668, 2017.

    Article  CAS  Google Scholar 

  2. Abd, E., S. A. Yousef, M. N. Pastore, K. Telaprolu, Y. H. Mohammed, S. Namjoshi, J. E. Grice, and M. S. Roberts. Skin models for the testing of transdermal drugs. Clin. Pharmacol. Adv. Appl. 8:163–176, 2016.

    CAS  Google Scholar 

  3. Albekairi, N. A., S. Al-Enazy, S. Ali, and E. Rytting. Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast. Ther. Deliv. 6:1325–1334, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ali, H., I. Kalashnikova, M. A. White, M. Sherman, and E. Rytting. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int. J. Pharm. 454:149–157, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ali, S., and E. Rytting. Influences of nanomaterials on the barrier function of epithelial cells. Adv. Exp. Med. Biol. 811:45–54, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. Ananta, M., R. A. Brown, and V. Mudera. A rapid fabricated living dermal equivalent for skin tissue engineering: an in vivo evaluation in an acute wound model. Tissue Eng. Part A 18:353–361, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Antunes, F., F. Andrade, F. Araújo, D. Ferreira, and B. Sarmento. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm. 83:427–435, 2013.

    Article  CAS  PubMed  Google Scholar 

  8. Appelt-Menzel, A., A. Cubukova, K. Günther, F. Edenhofer, J. Piontek, G. Krause, T. Stüber, H. Walles, W. Neuhaus, and M. Metzger. Establishment of a human blood–brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep. 8:894–906, 2017.

    Article  CAS  Google Scholar 

  9. Araújo, J. R., A. C. Pereira, A. Correia-Branco, E. Keating, and F. Martel. Oxidative stress induced by tert-butylhydroperoxide interferes with the placental transport of glucose: in vitro studies with BeWo cells. Eur. J. Pharmacol. 720:218–226, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Araújo, F., and B. Sarmento. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int. J. Pharm. 458:128–134, 2013.

    Article  CAS  PubMed  Google Scholar 

  11. Arumugasaamy, N., H. B. Baker, D. S. Kaplan, P. C. W. Kim, and J. P. Fisher. Fabrication and printing of multi-material hydrogels. In: 3D Printing and Biofabrication, edited by A. Ovsianikov, J. Yoo, and V. Mironov. Cham: Springer International Publishing, 2016, pp. 1–34. https://doi.org/10.1007/978-3-319-40498-1_13-1.

    Chapter  Google Scholar 

  12. Ataç, B., I. Wagner, R. Horland, R. Lauster, U. Marx, A. G. Tonevitsky, R. P. Azar, and G. Lindner. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip 13:3555, 2013.

    Article  CAS  PubMed  Google Scholar 

  13. Banks, W. A. Characteristics of compounds that cross the blood–brain barrier. BMC Neurol. 9:S3, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bannasch, H., A. Momeni, F. Knam, G. B. Stark, and M. Föhn. Tissue engineering of skin substitutes. Panminerva Med. 47:53–60, 2005.

    CAS  PubMed  Google Scholar 

  15. Béduneau, A., C. Tempesta, S. Fimbel, Y. Pellequer, V. Jannin, F. Demarne, and A. Lamprecht. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur. J. Pharm. Biopharm. 87:290–298, 2014.

    Article  CAS  PubMed  Google Scholar 

  16. Bellas, E., M. Seiberg, J. Garlick, and D. L. Kaplan. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol. Biosci. 12:1627–1636, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bengalli, R., P. Mantecca, M. Camatini, and M. Gualtieri. Effect of nanoparticles and environmental particles on a cocultures model of the air-blood barrier. Int. Biomed. Res. 2013. https://doi.org/10.1155/2013/801214.

    Article  Google Scholar 

  18. Bhattacharya, J., and M. A. Matthay. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 75:593–615, 2013.

    Article  CAS  PubMed  Google Scholar 

  19. Bhattacherjee, A., Y. Hrynets, and M. Betti. Transport of the glucosamine-derived browning product fructosazine (Polyhydroxyalkylpyrazine) across the human intestinal Caco-2 cell monolayer: role of the hexose transporters. J. Agric. Food Chem. 65:4642–4650, 2017.

    Article  CAS  PubMed  Google Scholar 

  20. Biemans, E. A. L. M., L. Jäkel, R. M. W. de Waal, H. B. Kuiperij, and M. M. Verbeek. Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood–brain barrier. J. Neurosci. Res. 95:1513–1522, 2017.

    Article  CAS  PubMed  Google Scholar 

  21. Blundell, C., E. R. Tess, A. S. R. Schanzer, C. Coutifaris, E. J. Su, S. Parry, and D. Huh. A microphysiological model of the human placental barrier. Lab Chip 16:3065–3073, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bode, C. J., H. Jin, E. Rytting, P. S. Silverstein, A. M. Young, and K. L. Audus. In vitro models for studying trophoblast transcellular transport. Methods Mol. Med. 122:225–239, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bond, J. R., and B. W. Barry. Limitations of hairless mouse skin as a model for in vitro permeation studies through human skin: hydration damage. J. Invest. Dermatol. 90:486–489, 1988.

    Article  CAS  PubMed  Google Scholar 

  24. Booth, R., and H. Kim. Characterization of a microfluidic in vitro model of the blood–brain barrier (μBBB). Lab Chip 12:1784, 2012.

    Article  CAS  PubMed  Google Scholar 

  25. Bove, P. F., H. Dang, C. Cheluvaraju, L. C. Jones, X. Liu, W. K. O’Neal, S. H. Randell, R. Schlegel, and R. C. Boucher. Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am. J. Respir. Cell Mol. Biol. 50:767–776, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Braakhuis, H. M., S. K. Kloet, S. Kezic, F. Kuper, M. V. D. Z. Park, S. Bellmann, M. van der Zande, S. Le Gac, P. Krystek, R. J. B. Peters, I. M. C. M. Rietjens, and H. Bouwmeester. Progress and future of in vitro models to study translocation of nanoparticles. Arch. Toxicol. 89:1469–1495, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Branka, R., G. Mirjana, T.-T. Estelle, P. Fabrice, and F. Francoise. Simultaneous absorption of vitamins C and E from topical microemulsions using reconstructed human epidermis as a skin model. Eur. J. Pharm. Biopharm. 72:69–75, 2009.

    Article  CAS  Google Scholar 

  28. Carr, K. E., and P. G. Toner. Morphology of the intestinal Mucosa. In: Pharmacology of Intestinal Permeation, edited by T. Z. Csáky. Berlin, Heidelberg: Springer, 1984, pp. 1–3. https://doi.org/10.1007/978-3-642-69505-6_1.

    Chapter  Google Scholar 

  29. Carreras, N., C. Alonso, M. Martí, and M. J. Lis. Mass transport model through the skin by microencapsulation system. J. Microencapsul. 32:358–363, 2015.

    Article  CAS  PubMed  Google Scholar 

  30. Cartwright, L., M. S. Poulsen, H. M. Nielsen, G. Pojana, L. E. Knudsen, M. Saunders, and E. Rytting. In vitro placental model optimization for nanoparticle transport studies. Int. J. Nanomedicine 7:497–510, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Castranova, V., J. Rabovsky, J. H. Tucker, and P. R. Miles. The alveolar type II epithelial cell: a multifunctional pneumocyte. Toxicol. Appl. Pharmacol. 93:472–483, 1988.

    Article  CAS  PubMed  Google Scholar 

  32. Cecchelli, R., S. Aday, E. Sevin, C. Almeida, M. Culot, L. Dehouck, C. Coisne, B. Engelhardt, M. P. Dehouck, and L. Ferreira. A stable and reproducible human blood–brain barrier model derived from hematopoietic stem cells. PLoS ONE 9:e84179, 2014.

    Article  Google Scholar 

  33. Cho, H., J. H. Seo, K. H. K. Wong, Y. Terasaki, J. Park, K. Bong, K. Arai, E. H. Lo, and D. Irimia. Three-dimensional blood–brain barrier model for in vitro studies of neurovascular pathology. Sci. Rep. 5:15222, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho, C.-F., J. M. Wolfe, C. M. Fadzen, D. Calligaris, K. Hornburg, E. A. Chiocca, N. Y. R. Agar, B. L. Pentelute, and S. E. Lawler. Blood-brain–barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat. Commun. 8:15623, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Conings, S., F. Amant, P. Annaert, and K. Van Calsteren. Integration and validation of the ex vivo human placenta perfusion model. J. Pharmacol. Toxicol. Methods 88:25–31, 2017.

    Article  CAS  PubMed  Google Scholar 

  36. Correia Carreira, S., L. Walker, K. Paul, and M. Saunders. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Nanotoxicology 9:1–14, 2013.

    Google Scholar 

  37. Costello, C. M., M. B. Phillipsen, L. M. Hartmanis, M. A. Kwasnica, V. Chen, D. Hackam, M. W. Chang, W. E. Bentley, and J. C. March. Microscale bioreactors for in situ characterization of GI epithelial cell physiology. Sci. Rep. 7:1–10, 2017.

    Article  CAS  Google Scholar 

  38. Costello, C. M., R. M. Sorna, Y. L. Goh, I. Cengic, N. K. Jain, and J. C. March. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11:2030–2039, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crank, J. The Mathematics of Diffusion. Oxford: Oxford University Press, 1980.

    Google Scholar 

  40. Curren, R. D., G. C. Mun, D. P. Gibson, and M. J. Aardema. Development of a method for assessing micronucleus induction in a 3D human skin model (EpiDerm™). Mutat. Res. Toxicol. Environ. Mutagen. 607:192–204, 2006.

    Article  CAS  Google Scholar 

  41. Cussler, E. L. Mass Transfer in Fluid Systems. Cambridge: Cambridge University Press, 2009.

    Book  Google Scholar 

  42. Czupalla, C. J., S. Liebner, and K. Devraj. In vitro models of the blood–brain barrier. Methods Mol. Biol. 1135:415–437, 2014.

    Article  CAS  PubMed  Google Scholar 

  43. Davies, D. J., J. R. Heylings, H. Gayes, T. J. McCarthy, and M. C. Mack. Further development of an in vitro model for studying the penetration of chemicals through compromised skin. Toxicol. Vitr. 38:101–107, 2017.

    Article  CAS  Google Scholar 

  44. Devriese, S., L. Van den Bossche, S. Van Welden, T. Holvoet, I. Pinheiro, P. Hindryckx, M. De Vos, and D. Laukens. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochem. Cell Biol. 148:85–93, 2017.

    Article  CAS  PubMed  Google Scholar 

  45. Duval, K., H. Grover, L.-H. Han, Y. Mou, A. F. Pegoraro, J. Fredberg, and Z. Chen. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32:266–277, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eigenmann, D. E., G. Xue, K. S. Kim, A. V. Moses, M. Hamburger, and M. Oufir. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elad, D., R. Levkovitz, A. J. Jaffa, G. Desoye, and M. Hod. Have we neglected the role of fetal endothelium in transplacental transport? Traffic 15:122–126, 2014.

    Article  CAS  PubMed  Google Scholar 

  48. Ensign, L. M., R. Cone, and J. Hanes. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64(6):557–570, 2012.

    Article  CAS  PubMed  Google Scholar 

  49. Esch, M. B., G. J. Mahler, T. Stokol, and M. L. Shuler. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14:3081–3092, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Farrell, T. L., M. Gomez-Juaristi, L. Poquet, K. Redeuil, K. Nagy, M. Renouf, and G. Williamson. Absorption of dimethoxycinnamic acid derivatives in vitro and pharmacokinetic profile in human plasma following coffee consumption. Mol. Nutr. Food Res. 56:1413–1423, 2012.

    Article  CAS  PubMed  Google Scholar 

  51. Fatehullah, A., S. H. Tan, and N. Barker. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18:246–254, 2016.

    Article  CAS  PubMed  Google Scholar 

  52. Flamand, N., L. Marrot, J. P. Belaidi, L. Bourouf, E. Dourille, M. Feltes, and J. R. Meunier. Development of genotoxicity test procedures with Episkin®, a reconstructed human skin model: towards new tools for in vitro risk assessment of dermally applied compounds? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 606:39–51, 2006.

    Article  CAS  Google Scholar 

  53. Fleischli, F. D., F. Morf, and C. Adlhart. Skin concentrations of topically applied substances in reconstructed human epidermis (RHE) compared with human skin using in vivo confocal raman microscopy. Chim. Int. J. Chem. 69:147–151, 2015.

    Article  CAS  Google Scholar 

  54. Freese, C., S. Hanada, P. Fallier-Becker, C. J. Kirkpatrick, and R. E. Unger. Identification of neuronal and angiogenic growth factors in an in vitro blood–brain barrier model system: relevance in barrier integrity and tight junction formation and complexity. Microvasc. Res. 111:1–11, 2017.

    Article  CAS  PubMed  Google Scholar 

  55. Garland, M. J., K. Migalska, T. M. Tuan-Mahmood, T. Raghu Raj Singh, R. Majithija, E. Caffarel-Salvador, C. M. McCrudden, H. O. McCarthy, A. David Woolfson, and R. F. Donnelly. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. Int. J. Pharm. 434:80–89, 2012.

    Article  CAS  PubMed  Google Scholar 

  56. Gaur, R., L. Mishra, and S. K. Sen Gupta. Diffusion and transport of molecules in living cells. In: Modelling and Simulation of Diffusive Processes, edited by S. K. Basu, and et al. Cham: Springer, 2014, pp. 27–48. https://doi.org/10.1007/978-3-319-05657-9.

    Chapter  Google Scholar 

  57. Gayer, C. P., and M. D. Basson. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 21(8):1237–1244, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gehrke, S. H., J. P. Fisher, M. Palasis, and M. E. Lund. Factors determining hydrogel permeability. Ann. N. Y. Acad. Sci. 831:179–184, 2006.

    Article  Google Scholar 

  59. González-Burgos, E., M. Carretero, and M. Gómez-Serranillos. In vitro permeability study of cns-active diterpenes from Sideritis spp. using cellular models of blood–brain barrier. Planta Med. 79:1545–1551, 2013.

    Article  CAS  PubMed  Google Scholar 

  60. Grafmueller, S., P. Manser, L. Diener, P. A. Diener, X. Maeder-Althaus, L. Maurizi, W. Jochum, H. F. Krug, T. Buerki-Thurnherr, U. von Mandach, and P. Wick. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model. Environ. Health Perspect. 123:1280–1286, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grégoire, S., C. Ribaud, F. Benech, J. R. Meunier, A. Garrigues-Mazert, and R. H. Guy. Prediction of chemical absorption into and through the skin from cosmetic and dermatological formulations. Br. J. Dermatol. 160:80–91, 2009.

    Article  PubMed  Google Scholar 

  62. Guo, Z., C. A. Higgins, B. M. Gillette, M. Itoh, N. Umegaki, K. Gledhill, S. K. Sia, and A. M. Christiano. Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Res Ther. 2013. https://doi.org/10.1186/scrt363.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hersom, M., H. C. Helms, N. Pretzer, C. Goldeman, A. I. Jensen, G. Severin, M. S. Nielsen, R. Holm, and B. Brodin. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol. Cell. Neurosci. 76:59–67, 2016.

    Article  CAS  PubMed  Google Scholar 

  64. Hilgendorf, C., H. Spahn-Langguth, C. G. Regårdh, E. Lipka, G. L. Amidon, and P. Langguth. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 89:63–75, 2000.

    Article  CAS  PubMed  Google Scholar 

  65. Hoff, D., L. Sheikh, S. Bhattacharya, S. Nayar, and T. J. Webster. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier. Int. J. Nanomed. 8:703–710, 2013.

    Google Scholar 

  66. Horváth, L., Y. Umehara, C. Jud, F. Blank, A. Petri-Fink, and B. Rothen-Rutishauser. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 5:7974, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hsia, E., M. J. Johnston, R. J. Houlden, W. H. Chern, and H. E. J. Hofland. Effects of topically applied acitretin in reconstructed human epidermis and the rhino mouse. J. Invest. Dermatol. 128:125–130, 2008.

    Article  CAS  PubMed  Google Scholar 

  68. Huang, X., M. Luthi, E. C. Ontsouka, S. Kallol, M. U. Baumann, D. V. Surbek, and C. Albrecht. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport. Mol. Hum. Reprod. 22:442–456, 2016.

    Article  CAS  PubMed  Google Scholar 

  69. Huch, M., J. A. Knoblich, M. P. Lutolf, and A. Martinez-Arias. The hope and the hype of organoid research. Development 144:938–941, 2017.

    Article  CAS  PubMed  Google Scholar 

  70. Huh, D., D. C. Leslie, B. D. Matthews, J. P. Fraser, S. Jurek, G. A. Hamilton, K. S. Thorneloe, M. A. McAlexander, and D. E. Ingber. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4:159ra147, 2012.

    Article  CAS  PubMed  Google Scholar 

  71. Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328:1662–1668, 2010.

    Article  CAS  PubMed  Google Scholar 

  72. Huong, S. P., H. Bun, J. D. Fourneron, J. P. Reynier, and V. Andrieu. Use of various models for in vitro percutaneous absorption studies of ultraviolet filters. Skin Res. Technol. 15:253–261, 2009.

    Article  PubMed  Google Scholar 

  73. Ikeda, K., C. Ueda, K. Yamada, A. Nakamura, Y. Hatsuda, S. Kawanishi, S. Nishii, and M. Ogawa. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers. Pharmazie 70:471–476, 2015.

    CAS  PubMed  Google Scholar 

  74. Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispo. 16:351–380, 1995.

    Article  CAS  Google Scholar 

  75. Kasper, J. Y., L. Feiden, M. I. Hermanns, C. Bantz, M. Maskos, R. E. Unger, and C. J. Kirkpatrick. Pulmonary surfactant augments cytotoxicity of silica nanoparticles: studies on an in vitro air–blood barrier model. Beilstein J. Nanotechnol. 6:517–528, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kasper, J. Y., M. I. Hermanns, R. E. Unger, and C. J. Kirkpatrick. A responsive human triple-culture model of the air–blood barrier: incorporation of different macrophage phenotypes. J. Tissue Eng. Regen. Med. 11:1285–1297, 2017.

    Article  CAS  PubMed  Google Scholar 

  77. Kelly, J. R., P. J. Kennedy, J. F. Cryan, T. G. Dinan, G. Clarke, and N. P. Hyland. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9:392, 2015.

    PubMed  PubMed Central  Google Scholar 

  78. Kim, H. J., D. Huh, G. Hamilton, and D. E. Ingber. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174, 2012.

    Article  CAS  PubMed  Google Scholar 

  79. Kim, B. S., J. S. Lee, G. Gao, and D. W. Cho. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2):025034, 2017.

    Article  CAS  PubMed  Google Scholar 

  80. Kimura, O., Y. Kotaki, N. Hamaue, K. Haraguchi, and T. Endo. Transcellular transport of domoic acid across intestinal Caco-2 cell monolayers. Food Chem. Toxicol. 49:2167–2171, 2011.

    Article  CAS  PubMed  Google Scholar 

  81. Kitano, T., H. Iizasa, I.-W. Hwang, Y. Hirose, T. Morita, T. Maeda, and E. Nakashima. Conditionally immortalized syncytiotrophoblast cell lines as new tools for study of the blood-placenta barrier. Biol. Pharm. Bull. 27:753–759, 2004.

    Article  CAS  PubMed  Google Scholar 

  82. Klein, S. G., T. Serchi, L. Hoffmann, B. Blömeke, and A. C. Gutleb. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part. Fibre Toxicol. 10:31, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kloet, S. K., A. P. Walczak, J. Louisse, H. H. J. van den Berg, H. Bouwmeester, P. Tromp, R. G. Fokkink, and I. M. C. M. Rietjens. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model. Toxicol. Vitr. 29:1701–1710, 2015.

    Article  CAS  Google Scholar 

  84. Knipp, G. T., K. L. Audus, and M. J. Soares. Nutrient transport across the placenta. Adv. Drug Deliv. Rev. 38:41–58, 1999.

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi, T., T. Koizumi, M. Kobayashi, J. Ogura, Y. Horiuchi, Y. Kimura, A. Kondo, A. Furugen, K. Narumi, N. Takahashi, and K. Iseki. Insulin stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1 in the human intestinal cell line Caco-2. Drug Metab. Pharmacokinet. 32:157–163, 2017.

    Article  CAS  PubMed  Google Scholar 

  86. Koch, L., A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. Chichkov. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109:1855–1863, 2012.

    Article  CAS  PubMed  Google Scholar 

  87. Kohn, J. C., D. W. Zhou, F. Bordeleau, A. L. Zhou, B. N. Mason, M. J. Mitchell, M. R. King, and C. A. Reinhart-King. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys. J. 108:471–478, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kraning-Rush, C. M., and C. A. Reinhart-King. Controlling matrix stiffness and topography for the study of tumor cell migration. Cell Adhes. Migr. 6(3):274–279, 2012.

    Article  Google Scholar 

  89. Kuehn, A., S. Kletting, C. De Souza Carvalho-Wodarz, U. Repnik, G. Griffiths, U. Fischer, E. Meese, H. Huwer, D. Wirth, T. May, N. Schneider-Daum, and C. M. Lehr. Human alveolar epithelial cells expressing tight junctions to model the air–blood barrier. Altex 33:251–260, 2016.

    PubMed  Google Scholar 

  90. Kuo, C. Y., T. Guo, J. Cabrera-Luque, N. Arumugasaamy, L. Bracaglia, A. Garcia-Vivas, M. Santoro, H. Baker, J. Fisher, and P. Kim. Placental basement membrane proteins are required for effective cytotrophoblast invasion in a three-dimensional bioprinted placenta model. J. Biomed. Mater. Res. A. 106:1476–1487, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lager, S., and T. L. Powell. Regulation of nutrient transport across the placenta. J. Pregnancy. 2012:179827, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lambrecht, B. N. Alveolar macrophage in the driver’s seat. Immunity 24:366–368, 2006.

    Article  CAS  PubMed  Google Scholar 

  93. Lee, S., S.-P. Jin, Y. K. Kim, G. Y. Sung, J. H. Chung, and J. H. Sung. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed. Microdevices 19:22, 2017.

    Article  CAS  PubMed  Google Scholar 

  94. Lee, J. S., R. Romero, Y. M. Han, H. C. Kim, C. J. Kim, J.-S. Hong, and D. Huh. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J. Matern. Neonatal Med. 29:1046–1054, 2016.

    Article  CAS  Google Scholar 

  95. Lehmann, A. D., N. Daum, M. Bur, C. M. Lehr, P. Gehr, and B. M. Rothen-Rutishauser. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur. J. Pharm. Biopharm. 77:398–406, 2011.

    Article  CAS  PubMed  Google Scholar 

  96. Lelu, S., M. Afadzi, S. Berg, A. Aslund, S. Torp, W. Sattler, and C. D. Davies. Primary porcine brain endothelial cells as in vitro model to study effects of ultrasound on blood–brain barrier function. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1):281–290, 2016.

    Article  PubMed  Google Scholar 

  97. Leonard, F., E.-M. Collnot, and C.-M. Lehr. A 3-dimensional co-culture of enterocytes, macrophages and dendritic cells to model the inflamed intestinal mucosa in vitro. Mol. Pharm. 7:2103–2119, 2010.

    Article  CAS  PubMed  Google Scholar 

  98. Levkovitz, R., U. Zaretsky, Z. Gordon, A. J. Jaffa, and D. Elad. In vitro simulation of placental transport: part I. Biological model of the placental barrier. Placenta 34:699–707, 2013.

    Article  CAS  PubMed  Google Scholar 

  99. Levkovitz, R., U. Zaretsky, A. J. Jaffa, M. Hod, and D. Elad. In vitro simulation of placental transport: part II. Glucose transfer across the placental barrier model. Placenta 34:708–715, 2013.

    Article  CAS  PubMed  Google Scholar 

  100. Li, H., I. M. C. M. Rietjens, J. Louisse, M. Blok, X. Wang, L. Snijders, and B. van Ravenzwaay. Use of the ES-D3 cell differentiation assay, combined with the BeWo transport model, to predict relative in vivo developmental toxicity of antifungal compounds. Toxicol. Vitr. 29:320–328, 2015.

    Article  CAS  Google Scholar 

  101. Li, Y., S. Wang, R. Huang, Z. Huang, B. Hu, W. Zheng, G. Yang, and X. Jiang. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules 16:780–789, 2015.

    Article  CAS  PubMed  Google Scholar 

  102. Li, N., D. Wang, Z. Sui, X. Qi, L. Ji, X. Wang, and L. Yang. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng. Part C Methods 19:708–719, 2013.

    Article  CAS  PubMed  Google Scholar 

  103. Liew, K. F., N. A. Hanapi, K. L. Chan, S. R. Yusof, and C. Y. Lee. Assessment of the blood–brain barrier permeability of potential neuroprotective aurones in parallel artificial membrane permeability assay and porcine brain endothelial cell models. J. Pharm. Sci. 106:502–510, 2017.

    Article  CAS  PubMed  Google Scholar 

  104. Lippmann, E. S., A. Al-Ahmad, S. M. Azarin, S. P. Palecek, and E. V. Shusta. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci. Rep. 4:4160, 2015.

    Article  CAS  Google Scholar 

  105. Lippmann, E. S., S. M. Azarin, J. E. Kay, R. A. Nessler, H. K. Wilson, A. Al-Ahmad, S. P. Palecek, and E. V. Shusta. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30:783–791, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Little, M. H. Organoids: a special issue. Development 144:935–937, 2017.

    Article  CAS  PubMed  Google Scholar 

  107. Liu, Z., J. Mi, S. Yang, M. Zhao, Y. Li, and L. Sheng. Effects of P-glycoprotein on the intestine and blood–brain barrier transport of YZG-331, a promising sedative-hypnotic compound. Eur. J. Pharmacol. 791:339–347, 2016.

    Article  CAS  PubMed  Google Scholar 

  108. Lopalco, A., H. Ali, N. Denora, and E. Rytting. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast. Int. J. Nanomed. 10:1985–1996, 2015.

    CAS  Google Scholar 

  109. Lozoya-Agullo, I., I. González-Álvarez, M. González-Álvarez, M. Merino-Sanjuán, and M. Bermejo. In situ perfusion model in rat colon for drug absorption Studies: comparison with small intestine and Caco-2 cell model. J. Pharm. Sci. 104:3136–3145, 2015.

    Article  CAS  PubMed  Google Scholar 

  110. Maherally, Z., H. L. Fillmore, S. L. Tan, S. F. Tan, S. A. Jassam, F. I. Quack, K. E. Hatherell, and G. J. Pilkington. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood–brain barrier model exemplifies tight-junction integrity. FASEB J. 2017. https://doi.org/10.1096/fj.201700162r.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mahler, G. J., M. L. Shuler, and R. P. Glahn. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 20:494–502, 2009.

    Article  CAS  PubMed  Google Scholar 

  112. Mannelli, C., F. Ietta, A. M. Avanzati, D. Skarzynski, and L. Paulesu. Biological tools to study the effects of environmental contaminants at the feto-maternal interface. Dose. Response. 13:1559325815611902, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mantle, J. L., L. Min, and K. H. Lee. Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood–brain barrier model. Mol. Pharm. 13:4191–4198, 2016.

    Article  CAS  PubMed  Google Scholar 

  114. Mao, P., S. Wu, J. Li, W. Fu, W. He, X. Liu, A. S. Slutsky, H. Zhang, and Y. Li. Human alveolar epithelial type II cells in primary culture. Physiol. Rep. 2015. https://doi.org/10.14814/phy2.12288.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Markeson, D., J. M. Pleat, J. R. Sharpe, A. L. Harris, A. M. Seifalian, and S. M. Watt. Scarring, stem cells, scaffolds and skin repair. J. Tissue Eng. Regen. Med. 9:649–668, 2015.

    Article  PubMed  Google Scholar 

  116. Mathias, N. R., J. Timoszyk, P. I. Stetsko, J. R. Megill, R. L. Smith, and D. A. Wall. Permeability characteristics of Calu-3 human bronchial epithelial cells: in vitro-in vitro correlation to predict lung absorption in rats. J. Drug Target. 10:31–40, 2002.

    Article  CAS  Google Scholar 

  117. Mehta, D. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86:279–367, 2006.

    Article  CAS  PubMed  Google Scholar 

  118. Miura, S., K. Sato, M. Kato-Negishi, T. Teshima, and S. Takeuchi. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat. Commun. 6:8871, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mohamed, L. A., H. Zhu, Y. M. Mousa, E. Wang, W. Q. Qiu, and A. Kaddoumi. Amylin enhances amyloid-β peptide brain to blood efflux across the blood–brain barrier. J. Alzheimer’s Dis. 56:1087–1099, 2017.

    Article  CAS  Google Scholar 

  120. Monfort, A., M. Soriano-Navarro, J. M. García-Verdugo, and A. Izeta. Production of human tissue-engineered skin trilayer on a plasma-based hypodermis. J. Tissue Eng. Regen. Med. 7:479–490, 2013.

    Article  CAS  PubMed  Google Scholar 

  121. Mori, N., Y. Morimoto, and S. Takeuchi. Skin integrated with perfusable vascular channels on a chip. Biomaterials 116:48–56, 2017.

    Article  CAS  PubMed  Google Scholar 

  122. Mortensen, L. J., S. Jatana, R. Gelein, A. De Benedetto, K. L. De Mesy Bentley, L. A. Beck, A. Elder, and L. A. Delouise. Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology 7:1386–1398, 2013.

    Article  CAS  PubMed  Google Scholar 

  123. Mun, G. C., M. J. Aardema, T. Hu, B. Barnett, Y. Kaluzhny, M. Klausner, V. Karetsky, E. L. Dahl, and R. D. Curren. Further development of the EpiDerm™ 3D reconstructed human skin micronucleus (RSMN) assay. Mutat. Res. Genet. Toxicol Environ. Mutagen. 673:92–99, 2009.

    Article  CAS  Google Scholar 

  124. Naik, P., and L. Cucullo. In vitro blood–brain barrier models: current and perspective technologies. J. Pharm. Sci. 101(4):1337–1354, 2012.

    Article  CAS  PubMed  Google Scholar 

  125. Nalayanda, D. D., Q. Wang, W. B. Fulton, T. H. Wang, and F. Abdullah. Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels. J. Pediatr. Surg. 45:45–51, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Nayak, P. S., Y. Wang, T. Najrana, L. M. Priolo, M. Rios, S. K. Shaw, and J. Sanchez-Esteban. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respir. Res. 16:60, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nichols, J. E., J. A. Niles, S. P. Vega, L. B. Argueta, A. Eastaway, and J. Cortiella. Modeling the lung: design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp. Biol. Med. 239:1135–1169, 2014.

    Article  CAS  Google Scholar 

  128. Noah, T. K., B. Donahue, and N. F. Shroyer. Intestinal development and differentiation. Exp. Cell Res. 317:2702–2710, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ong, H. X., D. Traini, M. Bebawy, and P. M. Young. Ciprofloxacin is actively transported across bronchial lung epithelial cells using a calu-3 air interface cell model. Antimicrob. Agents Chemother. 57:2535–2540, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Oshima, S., C. Suzuki, R. Yajima, Y. Egawa, O. Hosoya, K. Juni, and T. Seki. The use of an artificial skin model to study transdermal absorption of drugs in inflamed skin. Biol. Pharm. Bull. 35:203–209, 2012.

    Article  CAS  PubMed  Google Scholar 

  131. Pan, F., L. Han, Y. Zhang, Y. Yu, and J. Liu. Optimization of Caco-2 and HT29 co-culture in vitro cell models for permeability studies. Int. J. Food Sci. Nutr. 66:680–685, 2015.

    Article  CAS  PubMed  Google Scholar 

  132. Partyka, P. P., G. A. Godsey, J. R. Galie, M. C. Kosciuk, N. K. Acharya, R. G. Nagele, and P. A. Galie. Mechanical stress regulates transport in a compliant 3D model of the blood–brain barrier. Biomaterials 115:30–39, 2017.

    Article  CAS  PubMed  Google Scholar 

  133. Patel, H., and S. Kwon. Interplay between cytokine-induced and cyclic equibiaxial deformation-induced nitric oxide production and metalloproteases expression in human alveolar epithelial cells. Cell. Mol. Bioeng. 2:615–624, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pattillo, R. A., and G. O. Gey. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 28:1231–1236, 1968.

    CAS  PubMed  Google Scholar 

  135. Peterson, L. W., and D. Artis. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14:141–153, 2014.

    Article  CAS  PubMed  Google Scholar 

  136. Plitman Mayo, R., D. S. Charnock-Jones, G. J. Burton, and M. L. Oyen. Three-dimensional modeling of human placental terminal villi. Placenta 43:54–60, 2016.

    Article  PubMed  Google Scholar 

  137. Pocock, K., L. Delon, V. Bala, S. Rao, C. Priest, C. Prestidge, and B. Thierry. Intestine-on-a-chip microfluidic model for efficient in vitro screening of oral chemotherapeutic uptake. ACS Biomater. Sci. Eng. 3:951–959, 2017.

    Article  CAS  Google Scholar 

  138. Poulsen, M. S., E. Rytting, T. Mose, and L. E. Knudsen. Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol. Vitr. 23:1380–1386, 2009.

    Article  CAS  Google Scholar 

  139. Prabhakarpandian, B., M.-C. Shen, J. B. Nichols, I. R. Mills, M. Sidoryk-Wegrzynowicz, M. Aschner, and K. Pant. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13:1093, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rackley, C. R., and B. R. Stripp. Building and maintaining the epithelium of the lung. J. Clin. Invest. 122:2724–2730, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rani, P., M. Vashisht, N. Golla, S. Shandilya, S. K. Onteru, and D. Singh. Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro. J. Funct. Foods 34:431–439, 2017.

    Article  CAS  Google Scholar 

  142. Reijnders, C. M. A., A. van Lier, S. Roffel, D. Kramer, R. J. Scheper, and S. Gibbs. Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts. Tissue Eng. Part A 21:2448–2459, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ren, H., N. P. Birch, and V. Suresh. An optimised human cell culture model for alveolar epithelial transport. PLoS ONE 11:e0165225, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rissmann, R., M. H. M. Oudshoorn, W. E. Hennink, M. Ponec, and J. A. Bouwstra. Skin barrier disruption by acetone: observations in a hairless mouse skin model. Arch. Dermatol. Res. 301:609–613, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rodrigues, F., C. Pereira, F. B. Pimentel, R. C. Alves, M. Ferreira, B. Sarmento, M. H. Amaral, and M. B. P. P. Oliveira. Are coffee silverskin extracts safe for topical use? An in vitro and in vivo approach. Ind. Crops Prod. 63:167–174, 2015.

    Article  CAS  Google Scholar 

  146. Rothen-Rutishauser, B. M., S. G. Kiama, and P. Gehr. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol. 32:281–289, 2005.

    Article  CAS  PubMed  Google Scholar 

  147. Sakolish, C. M., M. B. Esch, J. J. Hickman, M. L. Shuler, and G. J. Mahler. Modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine. 5:30–39, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sastry, B. V. R. Techniques to study human placental transport. Adv. Drug Deliv. Rev. 38(1):17–39, 1999.

    Article  CAS  PubMed  Google Scholar 

  149. Scheuplein, R. J. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol. 48:79–88, 1967.

    Article  CAS  PubMed  Google Scholar 

  150. Shi, D., L. Sun, G. Mi, L. Sheikh, S. Bhattacharya, S. Nayar, and T. J. Webster. Controlling ferrofluid permeability across the blood–brain barrier model. Nanotechnology 25:075101, 2014.

    Article  CAS  PubMed  Google Scholar 

  151. Siupka, P., M. N. Hersom, K. Lykke-Hartmann, K. B. Johnsen, L. B. Thomsen, T. L. Andresen, T. Moos, N. J. Abbott, B. Brodin, and M. S. Nielsen. Bidirectional apical–basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J. Cereb. Blood Flow Metab. 2017. https://doi.org/10.1177/0271678x17700665.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Song, Y., D. Du, L. Li, J. Xu, P. Dutta, and Y. Lin. In vitro study of receptor-mediated silica nanoparticles delivery across blood–brain barrier. ACS Appl. Mater. Interfaces. 9:20410–20416, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Song, D., J. Guo, F. Han, W. Zhang, Y. Wang, and Y. Wang. Establishment of an in vitro model of the human placental barrier by placenta slice culture and ussing chamber. Biosci. Biotechnol. Biochem. 77:1030–1034, 2013.

    Article  CAS  PubMed  Google Scholar 

  154. Stins, M. F., J. Badger, and K. Sik. Kim. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog. 30:19–28, 2001.

    Article  CAS  PubMed  Google Scholar 

  155. Sugihara, H., S. Toda, N. Yonemitsu, and K. Watanabe. Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. Br. J. Dermatol. 144:244–253, 2001.

    Article  CAS  PubMed  Google Scholar 

  156. Takaku, T., H. Nagahori, Y. Sogame, and T. Takagi. Quantitative structure-activity relationship model for the fetal-maternal blood concentration ratio of chemicals in humans. Biol. Pharm. Bull. 38:930–934, 2015.

    Article  CAS  PubMed  Google Scholar 

  157. Tang, Z., V. M. Abrahams, G. Mor, and S. Guller. Placental Hofbauer cells and complications of pregnancy. Ann. N. Y. Acad. Sci. 1221:103–108, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Teodorescu, F., G. Quéniat, C. Foulon, M. Lecoeur, A. Barras, S. Boulahneche, M. S. Medjram, T. Hubert, A. Abderrahmani, R. Boukherroub, and S. Szunerits. Transdermal skin patch based on reduced graphene oxide: a new approach for photothermal triggered permeation of ondansetron across porcine skin. J. Control. Release 245:137–146, 2017.

    Article  CAS  PubMed  Google Scholar 

  159. Trottier, V., G. Marceau-Fortier, L. Germain, C. Vincent, and J. Fradette. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26:2713–2723, 2008.

    Article  PubMed  Google Scholar 

  160. Van Bocxlaer, K., V. Yardley, S. Murdan, and S. L. Croft. Drug permeation and barrier damage in Leishmania-infected mouse skin. J. Antimicrob. Chemother. 71:1578–1585, 2016.

    Article  CAS  PubMed  Google Scholar 

  161. van den Broek, L. J., L. I. J. C. Bergers, C. M. A. Reijnders, and S. Gibbs. Progress and future prospectives in skin-on-chip development with emphasis on the use of different cell types and technical challenges. Stem Cell Rev. Reports 13:418–429, 2017.

    Article  CAS  Google Scholar 

  162. Villenave, R., S. Q. Wales, T. Hamkins-Indik, E. Papafragkou, J. C. Weaver, T. C. Ferrante, A. Bahinski, C. A. Elkins, M. Kulka, and D. E. Ingber. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS ONE 12:e0169412, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang, Y. I., H. E. Abaci, and M. L. Shuler. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114:184–194, 2017.

    Article  CAS  PubMed  Google Scholar 

  164. Wang, Y., N. Wang, B. Cai, G. Y. Wang, J. Li, and X. X. Piao. In vitro model of the blood–brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen. Res. 10:2011–2017, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ward, H. E., and T. E. Nicholas. Alveolar type I And type II cells. Aust. N. Z J. Med. 14:731–734, 1984.

    Article  CAS  PubMed  Google Scholar 

  166. Wice, B., D. Menton, H. Geuze, and A. L. Schwartz. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 186:306–316, 1990.

    Article  CAS  PubMed  Google Scholar 

  167. Wills, J. W., N. Hondow, A. D. Thomas, K. E. Chapman, D. Fish, T. G. Maffeis, M. W. Penny, R. A. Brown, G. J. S. Jenkins, A. P. Brown, P. A. White, and S. H. Doak. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Part. Fibre Toxicol. 13:1–21, 2016.

    Google Scholar 

  168. Woodworth, G. F., G. P. Dunn, E. A. Nance, J. Hanes, and H. Brem. Emerging Insights into barriers to effective brain tumor therapeutics. Front. Oncol. 4:1–14, 2014.

    Article  Google Scholar 

  169. Wu, X.-W., W. Wei, X.-W. Yang, Y.-B. Zhang, W. Xu, Y.-F. Yang, G.-Y. Zhong, H.-N. Liu, and S.-L. Yang. Anti-inflammatory phenolic acid esters from the roots and rhizomes of Notopterygium incisium and their permeability in the human Caco-2 monolayer cell model. Molecules 22:935, 2017.

    Article  CAS  PubMed Central  Google Scholar 

  170. Wufuer, M., G. H. Lee, W. Hur, B. Jeon, B. J. Kim, T. H. Choi, and S. H. Lee. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 6:1–12, 2016.

    Article  CAS  Google Scholar 

  171. Yu, Y., M. Wang, K. Zhang, D. Yang, Y. Zhong, J. An, B. Lei, and X. Zhang. The transepithelial transport mechanism of polybrominated diphenyl ethers in human intestine determined using a Caco-2 cell monolayer. Environ. Res. 154:93–100, 2017.

    Article  CAS  PubMed  Google Scholar 

  172. Zeng, L., X. Yang, H. Li, Y. Li, C. Yang, W. Gu, Y. Zhou, J. Du, H. Wang, J. Sun, D. Wen, and J. Jiang. The cellular kinetics of lung alveolar epithelial cells and its relationship with lung tissue repair after acute lung injury. Respir. Res. 17:164, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang, Z., and B. B. Michniak-Kohn. Tissue engineered human skin equivalents. Pharmaceutics 4:26–41, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, Y.-H., Z. Xia, L. Yan, and S. Liu. Prediction of placental barrier permeability: a model based on partial least squares variable selection procedure. Molecules 20:8270–8286, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhao, J., Z. Zeng, J. Sun, Y. Zhang, D. Li, X. Zhang, M. Liu, and X. Wang. A novel model of P-glycoprotein inhibitor screening using human small intestinal organoids. Basic Clin. Pharmacol. Toxicol. 120:250–255, 2017.

    Article  CAS  PubMed  Google Scholar 

  176. Zietek, T., E. Rath, D. Haller, and H. Daniel. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci. Rep. 5:16831, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a seed grant from the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Medical Center and the A. James Clark School of Engineering at the University of Maryland. J.N. acknowledges and thanks support from the Fulbright Scholars Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of these funding sources.

Conflict of interest

None of the authors have competing interests with the work presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Fisher.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugasaamy, N., Navarro, J., Kent Leach, J. et al. In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Ann Biomed Eng 47, 1–21 (2019). https://doi.org/10.1007/s10439-018-02124-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02124-w

Keywords

Navigation