Skip to main content

Advertisement

Log in

Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ASC:

Adipose stem cell

CPE:

Constant phase element capacitance

ES:

Electrical stimulation

μCT:

Micro-computed tomography

MHC:

Myosin heavy chain

PPy:

Polypyrrole

PTMC:

Poly (trimethylene carbonate)

SEM:

Scanning electron microscope

SMA:

Smooth muscle actin

SMC:

Smooth muscle cell

TGF-β:

Transforming growth factor-β

Ti/TIN:

Titanium nitride coated titanium

References

  1. Beamish, J. A., P. He, K. Kottke-Marchant, and R. E. Marchant. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng. Part B 16:467–491, 2010.

    Article  CAS  Google Scholar 

  2. Bjorninen, M., A. Siljander, J. Pelto, J. Hyttinen, M. Kellomaki, S. Miettinen, R. Seppanen, and S. Haimi. Comparison of chondroitin sulfate and hyaluronic Acid doped conductive polypyrrole films for adipose stem cells. Ann. Biomed. Eng. 42:1889–1900, 2014.

    Article  PubMed  Google Scholar 

  3. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10:275–309, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Egusa, H., M. Kobayashi, T. Matsumoto, J. Sasaki, S. Uraguchi, and H. Yatani. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment. Tissue Eng. Part A 19:770–782, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. Gabriel, C., A. Peyman, and E. H. Grant. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 54:4863–4878, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Gerthoffer, W. T., and S. J. Gunst. Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J. Appl. Physiol. 91(963–972):2001, 1985.

    Google Scholar 

  8. Gilmore, K. J., M. Kita, Y. Han, A. Gelmi, M. J. Higgins, S. E. Moulton, G. M. Clark, R. Kapsa, and G. G. Wallace. Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials 30:5292–5304, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Gimble, J. M., A. J. Katz, and B. A. Bunnell. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100:1249–1260, 2007.

    Article  CAS  PubMed  Google Scholar 

  10. Haimi, S., N. Suuriniemi, A. M. Haaparanta, V. Ella, B. Lindroos, H. Huhtala, S. Raty, H. Kuokkanen, G. K. Sandor, M. Kellomaki, S. Miettinen, and R. Suuronen. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds. Tissue Eng. Part A 15:1473–1480, 2009.

    Article  CAS  PubMed  Google Scholar 

  11. Hu, W., Y. Hsu, Y. Cheng, C. Li, R. Ruaan, C. Chien, C. Chung, and C. Tsao. Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Mater. Sci. Eng. C 37:28–36, 2014.

    Article  CAS  Google Scholar 

  12. Hwang, S. J., Y. M. Song, T. H. Cho, R. Y. Kim, T. H. Lee, S. J. Kim, Y. K. Seo, and I. S. Kim. The implications of the response of human mesenchymal stromal cells in three-dimensional culture to electrical stimulation for tissue regeneration. Tissue Eng. Part A 18:432–445, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, I. S., J. K. Song, Y. M. Song, T. H. Cho, T. H. Lee, S. S. Lim, S. J. Kim, and S. J. Hwang. Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells. Tissue Eng. Part A 15:2411–2422, 2009.

    Article  CAS  PubMed  Google Scholar 

  14. Kocaoemer, A., S. Kern, H. Klüter, and K. Bieback. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Langelaan, M. L. P., K. J. M. Boonen, K. Y. Rosaria-Chak, D. W. J. van der Schaft, M. J. Post, and F. P. T. Baaijens. Advanced maturation by electrical stimulation: differences in response between C2C12 and primary muscle progenitor cells. J. Tissue Eng. Regen. Med. 5:529–539, 2011.

    Article  PubMed  Google Scholar 

  16. McCullen, S. D., J. P. McQuilling, R. M. Grossfeld, J. L. Lubischer, L. I. Clarke, and E. G. Loboa. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue Eng. Part C 16:1377–1386, 2010.

    Article  CAS  Google Scholar 

  17. Meng, S., Z. Zhang, and M. Rouabhia. Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J. Bone Miner. Metab. 29:535–544, 2011.

    Article  CAS  PubMed  Google Scholar 

  18. Norlin, A., J. Pan, and C. Leygraf. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. Biomol. Eng. 19:67–71, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Nunes, S. S., J. W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M. A. Laflamme, K. Nanthakumar, G. J. Gross, P. H. Backx, G. Keller, and M. Radisic. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10:781–787, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, W. S., S. C. Heo, E. S. Jeon, H. Hong da, Y. K. Son, J. H. Ko, H. K. Kim, S. Y. Lee, J. H. Kim, and J. Han. Functional expression of smooth muscle-specific ion channels in TGF-beta(1)-treated human adipose-derived mesenchymal stem cells. Am. J. Physiol. Cell. Physiol. 305:C377–C391, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavesi, A., M. Soncini, A. Zamperone, S. Pietronave, E. Medico, A. Redaelli, M. Prat, and G. B. Fiore. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform. Biotechnol. Bioeng. 111:1452–1463, 2014.

    Article  CAS  PubMed  Google Scholar 

  22. Pelto, J., M. Bjorninen, A. Palli, E. Talvitie, J. Hyttinen, B. Mannerstrom, R. Suuronen Seppanen, M. Kellomaki, S. Miettinen, and S. Haimi. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng. Part A 19:882–892, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rensen, S. S., P. A. Doevendans, and G. J. van Eys. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15:100–108, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rowlands, A. S., and J. J. Cooper-White. Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer. Biomaterials 29:4510–4520, 2008.

    Article  CAS  PubMed  Google Scholar 

  25. Shen, F. H., B. C. Werner, H. Liang, H. Shang, N. Yang, X. Li, A. L. Shimer, G. Balian, and A. J. Katz. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation. Spine J. 13:32–43, 2013.

    Article  PubMed  Google Scholar 

  26. Shi, Y., and J. Massague. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700, 2003.

    Article  CAS  PubMed  Google Scholar 

  27. Slevin, M., J. Krupinski, J. Gaffney, S. Matou, D. West, H. Delisser, R. C. Savani, and S. Kumar. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol. 26:58–68, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Song, Y., J. W. Wennink, M. M. Kamphuis, L. M. Sterk, I. Vermes, A. A. Poot, J. Feijen, and D. W. Grijpma. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Tissue Eng. Part A 17:381–387, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. Song, Y., J. W. H. Wennink, M. M. J. Kamphuis, I. Vermes, A. A. Poot, J. Feijen, and D. W. Grijpma. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. J. Biomed. Mater. Res. Part A 95A:440–446, 2010.

    Article  CAS  Google Scholar 

  30. Stewart, E., N. R. Kobayashi, M. J. Higgins, A. F. Quigley, S. Jamali, S. E. Moulton, R. M. Kapsa, G. G. Wallace, and J. M. Crook. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng. Part C 21:385–393, 2015.

    Article  CAS  Google Scholar 

  31. Stewart, E. M., X. Liu, G. M. Clark, R. M. I. Kapsa, and G. G. Wallace. Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. Acta Biomater. 8:194–200, 2012.

    Article  CAS  PubMed  Google Scholar 

  32. Tandon, N., C. Cannizzaro, P. H. Chao, R. Maidhof, A. Marsano, H. T. Au, M. Radisic, and G. Vunjak-Novakovic. Electrical stimulation systems for cardiac tissue engineering. Nat. Protoc. 4:155–173, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thompson, B. C., R. T. Richardson, S. E. Moulton, A. J. Evans, S. O’Leary, G. M. Clark, and G. G. Wallace. Conducting polymers, dual neurotrophins and pulsed electrical stimulation—dramatic effects on neurite outgrowth. J. Control. Release 141:161–167, 2010.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, J., M. Li, E. T. Kang, and K. G. Neoh. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomater. 32:46–56, 2016.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Salvador Jimenes for assistance with the experiments, Thomas van Berkel for fabrication of the PTMC scaffolds as well as assisting with the experiments, and Elina Talvitie for fabricating the PPy-coatings. Authors also owe their gratitude to Sue Lyn Ku, Lydia Bolhuis-Versteeg, Miia Juntunen, Anna-Maija Honkala, and Sari Kalliokoski for technical assistance in cell culture. This work was carried out with the financial support of the Finnish Funding Agency for Technology and Innovation (TEKES); the Academy of Finland, the Paulo Foundation, the Science Centre of Tampere City, the Finnish Dental Society Apollonia and the ARC Centre of Excellence in Electromaterials Science at the University of Wollongong.

Disclosure

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miina Björninen.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1913 kb)

Supplementary material 2 (TIFF 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Björninen, M., Gilmore, K., Pelto, J. et al. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Ann Biomed Eng 45, 1015–1026 (2017). https://doi.org/10.1007/s10439-016-1755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1755-7

Keywords

Navigation