Skip to main content
Log in

Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success

  • Multi-Scale Modeling in the Clinic
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Image credits: Top center and top right: Ref.100; bottom left and bottom center: Invivosciences, LLC. All images used with permission.

Similar content being viewed by others

Notes

  1. http://bidd.nus.edu.sg/group/cjttd/.

  2. https://www.pharmgkb.org/.

  3. http://www.imagwiki.nibib.nih.gov/content/committee-credible-practice-modeling-simulation-healthcare-description.

References

  1. Adam, J., and N. Bellomo. A survey of models for tumor-immune system dynamics. Berlin: Springer, 2012.

    Google Scholar 

  2. Aerts, H. J., E. R. Velazquez, R. T. Leijenaar, C. Parmar, P. Grossmann, S. Carvalho, J. Bussink, R. Monshouwer, B. Haibe-Kains, D. Rietveld, F. Hoebers, M. M. Rietbergen, C. R. Leemans, A. Dekker, J. Quackenbush, R. J. Gillies, and P. Lambin. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5:4006, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambrosi, D., and L. Preziosi. On the closure of mass balance modes for tumors growth. Math. Models Methods Appl. Sci. 12(05):737–753, 2002.

    Article  Google Scholar 

  4. An, G. Closing the scientific loop: bridging correlation and causality in the petaflop age. Sci. Transl. Med. 2(41):41, 2010.

    Article  Google Scholar 

  5. An, G., and S. Kulkarni. An agent-based modeling framework linking inflammation and cancer using evolutionary principles: description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data. Math. Biosci. 260:16–24, 2015.

    Article  PubMed  Google Scholar 

  6. An, G., Q. Mi, J. Dutta-Moscato, and Y. Vodovotz. Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1(2):159–171, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andasari, V., R. T. Roper, M. H. Swat, and M. A. Chaplain. Integrating intracellular dynamics using CompuCell 3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion. PLoS One 7(3):e33726, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson, A. R. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2):163–186, 2015.

    Article  Google Scholar 

  9. Bae, Y. H. Drug targeting and tumor heterogeneity. J. Control. Release 133(1):2, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. Barrett, J. S., M. J. Fossler, K. D. Cadieu, and M. R. Gastonguay. Pharmacometrics: a multidisciplinary field to facilitate critical thinking in drug development and translational research settings. J. Clin. Pharmacol. 48:632–649, 2008.

    Article  PubMed  Google Scholar 

  11. Begam, B. F., and J. S. Kumar. A study on chemoinformatics and its applications on modern drug discovery. Procedia Eng. 38:1264–1275, 2012.

    Article  CAS  Google Scholar 

  12. Bellouquid, A., and M. Delitala. Mathematical methods and tools of kinetic theory towards modelling complex biological systems. Math. Models Methods Appl. Sci. 15(11):1639–1666, 2005.

    Article  Google Scholar 

  13. Benzekry, S., A. Gandolfi, and P. Hahnfeldt. Global dormancy of metastases due to systemic inhibition of angiogenesis. PLoS One 9(1):e84249-11, 2014.

    Article  CAS  Google Scholar 

  14. Bozic, I., and M. A. Nowak. Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. Proc. Natl. Acad. Sci. USA. 111(45):15964–15968, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brikci, F. B., J. Clairambault, B. Ribba, and B. Perthame. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57(1):91–110, 2008.

    Article  Google Scholar 

  16. Byrne, H. M. Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10(3):221–230, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Cappuccio, A., P. Tieri, and F. Castiglione. Multi-scale modelling in immunology: a review. Brief Bioinform. 17(3):408–418, 2015.

    Article  PubMed  Google Scholar 

  18. Cavallo, F., C. De Giovanni, P. Nanni, G. Forni, and P. L. Lollini. The immune hallmarks of cancer. Cancer Immunol. Immunother. 60:319–326, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chakrabarti, A., S. Verbridge, A. D. Stroock, C. Fischbach, and J. D. Varner. Multi-scale models of breast cancer progression. Ann. Biomed. Eng. 40(11):2488–2500, 2012.

    Article  PubMed  Google Scholar 

  20. Chang, R. L., L. Xie, P. E. Bourne, and B. O. Paisson. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput. Biol. 6(9):e10000938, 2010.

    Article  CAS  Google Scholar 

  21. Claret, L., and R. Bruno. Assessment of tumor growth inhibition metrics to predict overall survival. Clin Pharmacol Ther. 96(2):135–137, 2014.

    Article  CAS  PubMed  Google Scholar 

  22. Clark, A. M., A. J. Williams, and S. Ekins. Machines first, humans second: on the importance of algorithmic interpretation of open chemistry data. J. Cheminform. 7(9):1–20, 2015.

    CAS  Google Scholar 

  23. Clegg, L. W., and F. Gabhann. Site-specific phosphorylation of VEGFR2 is mediated by receptor trafficking: insights from a computational model. PLoS Comput. Biol. 11(6):1004158, 2015.

    Article  CAS  Google Scholar 

  24. Colin, T., F. Cornelis, J. Jouganous, J. Palussière, and O. Saut. Patient specific simulation of tumor growth, response to the treatment and relapse of a lung metastasis: a clinical case. J. Comput. Surg. 2:1, 2015.

    Article  Google Scholar 

  25. Colin, T., A. Iollo, D. Lombardi, and O. Saut. System identification in tumor growth modeling using semi-empirical eigenfunctions. Math. Models Methods Appl. Sci. 22(06):1250003-1, 2012.

    Article  Google Scholar 

  26. Cross, W. The code: an authorized history of the ASME boiler and pressure vessel code. New York: American Society of Mechanical Engineers, 1990.

    Google Scholar 

  27. Curtius, K., W. D. Hazelton, J. Jeon, and E. G. Luebeck. A multi-scale model evaluates screening for neoplasia in Barrett’s Esophagus. PLoS Comput. Biol. 11(5):e1004272, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Diaz, Jr, L. A., R. T. Williams, J. Wu, I. Kinde, J. R. Hecht, J. Berlin, B. Allen, I. Bozic, J. G. Reiter, M. A. Nowak, K. W. Kinzler, K. S. Oliner, and B. Vogelstein. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 486(7404):537–540, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. EFPIA MID3 Workgroup, S. Marshall, R. Burghaus, V. Cosson, S. Cheung, M. Chenel, O. Dellapasqua, N. Frey, B. Hamrén, L. Harnisch, F. Ivanow, T. Kerbusch, J. Lippert, P. Milligan, S. Rohou, A. Staab, J. Steimer, C. Tornøe, and S. Visser. Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacomet. Syst. Pharmacol. 5:93–122, 2016.

    Article  CAS  Google Scholar 

  30. Elson, E. L., and G. M. Genin. Tissue constructs: platforms for basic research and drug discovery. Interface Focus. 6(1):20150095, 2016.

    Article  PubMed  Google Scholar 

  31. Engelberg, J. A., G. E. Ropella, and C. A. Hunt. Essential operating principles for tumor spheroid growth. BMC Syst Biol. 2(1):110, 2009.

    Article  CAS  Google Scholar 

  32. Engler, A. J., P. O. Humbert, B. Wehrle-Haller, and V. M. Weaver. Multi-scale modeling of form and function. Science 324(5924):208–212, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ette, E. I., and P. J. Williams. Pharmacometrics: the science of quantitative pharmacology. Hoboken: Wiley, 2007.

    Book  Google Scholar 

  34. Finley, S. D., P. Angelikopoulos, P. Koumoutsakos, and A. S. Popel. Pharmacokinetics of anti-VEGF agent aflibercept in cancer predicted by data driven, molecular-detailed model. CPT: Pharmacomet. Syst. Pharmacol. 4(11):641–649, 2015.

    CAS  Google Scholar 

  35. Finley, S. D., L. H. Chu, and A. S. Popel. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov. Today 20:187–197, 2015.

    Article  CAS  PubMed  Google Scholar 

  36. Finley, S. D., and A. S. Popel. Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions. J. Natl. Cancer Inst. 105(11):802–811, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fitzgerald, J. B., B. Schoeberl, U. B. Nielson, and P. K. Sorger. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2(9):458–466, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Gallaher, J., and A. R. Anderson. Evolution of intratumoral phenotypic heterogeneity: the role of trait inheritance. Interface Focus. 3(4):20130016, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Garny, A., J. Cooper, and P. J. Hunter. Toward a VPH/Physiome ToolKit. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(2):134–147, 2010.

    Article  PubMed  Google Scholar 

  40. Gatenby, R. A., and E. T. Gawlinski. A reaction-diffusion model of cancer invasion. Cancer Research 56(24):5745–5753, 1996.

    CAS  PubMed  Google Scholar 

  41. Gerlinger, M., A. J. Rowan, S. Horswell, J. Larkin, D. Endesfelder, E. Gronroos, P. Martinez, N. Matthews, A. Stewart, P. Tarpey, I. Varela, B. Phillimore, S. Begum, N. Q. McDonald, A. Butler, D. Jones, K. Raine, C. Latimer, C. R. Santos, M. Nohadani, A. C. Eklund, B. Spencer-Dene, G. Clark, L. Pickering, G. Stamp, M. Gore, Z. Szallasi, J. Downward, P. A. Futreal, and C. Swanton. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–892, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillies, R. J., P. E. Kinahan, and H. Hricak. Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577, 2016.

    Article  PubMed  Google Scholar 

  43. Green, Jr, S. E., and Y. Li. Rhetorical institutionalism: Language, agency, and structure in institutional theory since Alvesson. J. Manag. Stud. 48(7):1662–1697, 1993.

    Article  Google Scholar 

  44. Gross, S., R. Rahal, N. Stransky, C. Lengauer, and K. P. Hoeflich. Targeting cancer with kinase inhibitors. J. Clin. Invest. 125:1780–1789, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.

    Article  CAS  PubMed  Google Scholar 

  46. Heilbron, J. L. The affair of the countess Görlitz. Proc. Am. Philos. Soc. 138(2):284–316, 1994.

    Google Scholar 

  47. Hirt, M. N., A. Hansen, and T. Eschenhagen. Cardiac tissue engineering state of the art. Circulation research. 114(2):354–367, 2014.

    Article  CAS  PubMed  Google Scholar 

  48. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology. 4(11):682–690, 2008.

    Article  CAS  PubMed  Google Scholar 

  49. Houk, B. E., C. L. Bello, B. Poland, L. S. Rosen, G. D. Demetri, and R. J. Motzer. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother. Pharmacol. 66(2):357–371, 2010.

    Article  CAS  PubMed  Google Scholar 

  50. Jang, G. R., R. Z. Harris, and D. T. Lau. Pharmacokinetics and its role in small molecule drug discovery research. Med. Res. Rev. 21:382–396, 2001.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, C., C. Cui, L. Li, and Y. Shao. The anomalous diffusion of a tumor invading with different surrounding tissues. PLoS One. 9(10):e109784, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Joerger, M. Covariate pharmacokinetic model building in oncology and its potential clinical relevance. AAPS J. 14(1):119–132, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jones, H. M., Y. Chen, C. Gibson, T. Heimbach, N. Parrott, S. A. Peters, J. Snoeys, V. V. Upreti, M. Zheng, and S. D. Hall. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin. Pharmacol. Ther. 97:247–262, 2015.

    Article  CAS  PubMed  Google Scholar 

  54. Kam, Y., K. A. Rejniak, and A. R. Anderson. Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J. Cell Physiol. 227(2):431–438, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karthikeyan, M., R. Vyas, S. S. Tambe, D. Radhamohan, and B. D. Kulkarni. Role of chemical reactivity and transition state modeling for virtual screening. Comb. Chem. High Throughput Screen. 18(7):638–657, 2015.

    Article  CAS  PubMed  Google Scholar 

  56. Kiang, T. K., C. M. Sherwin, M. G. Spigarelli, and M. H. Ensom. Fundamentals of population pharmacokinetic modelling: modelling and software. Clin. Pharmacokinet. 51(8):515–525, 2012.

    Article  CAS  PubMed  Google Scholar 

  57. Kim, Y., G. Powathil, H. Kang, D. Trucu, H. Kim, S. Lawler, and M. Chaplain. Strategies of eradicating glioma cells: a multi-scale mathematical model with MiR-451-AMPK-mTOR control. PLoS One 10:e0114370, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kirouac, D. C., J. Y. Du, J. Lahdenranta, R. Overland, D. Yarar, V. Paragas, E. Pace, C. F. McDonagh, U. B. Nielsen, and M. D. Onsum. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci Signal. 6:ra68, 2013.

    Article  PubMed  CAS  Google Scholar 

  59. Konukoglu, E., O. Clatz, P.-Y. Bondiau, H. Delingette, and A. Nicholas. Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med. Image Anal. 14(2):111–125, 2010.

    Article  PubMed  Google Scholar 

  60. Konukoglu, E., O. Clatz, H. Delingette, and N. Ayache. Personalization of reaction-diffusion tumor growth models in MR images: application to brain gliomas characterization and radiotherapy planning. In: Multi-scale cancer modeling, Chapman & Hall/CRC Mathematical and Computational Biology, edited by T. S. Deisboeck, and G. Stamatakos. Boca Raton: CRC Press, 2010.

    Google Scholar 

  61. Lalonde, R. L., K. G. Kowalski, M. M. Hutmacher, W. Ewy, D. J. Nichols, P. A. Milligan, B. W. Corrigan, P. A. Lockwood, S. A. Marshall, L. J. Benincosa, T. G. Tensfeldt, K. Parivar, M. Amantea, P. Glue, H. Koide, and R. Miller. Model-based drug development. Clin. Pharmacol. Ther. 82(1):21–32, 2007.

    Article  CAS  PubMed  Google Scholar 

  62. Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 3(6):285–290, 1953.

    CAS  PubMed  Google Scholar 

  63. Lorz, A., T. Lorenzi, M. E. Hochberg, J. Clairambault, and B. Perthame. Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM Math. Model. Numer. Anal. 47:377–399, 2013.

    Article  Google Scholar 

  64. Luebeck, E., and S. Moolgavkar. Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl. Acad. Sci. 99(23):15095, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Macklin, P., M. E. Edgerton, A. M. Thompson, and V. Cristini. Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): From microscopic measurements to macroscopic predictions of clinical progression. J. Theor. Biol. 301:122–140, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mager, D. E., and W. J. Jusko. Development of translational pharmacokinetic-pharmacodynamic models. Clin Pharmacol Ther. 83:909–912, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mathijssen, R. H., A. Sparreboom, and J. Verweij. Determining the optimal dose in the development of anticancer agents. Nat. Rev. Clin. Oncol. 11(5):272–281, 2014.

    Article  CAS  PubMed  Google Scholar 

  68. Meza, R. J., S. H. Jeon, and E. G. Moolgavkar. Luebeck. Age-specific incidence of cancer: Phases, transitions, and biological implications. Proc. Natl. Acad. Sci. 105(42):16284, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moolgavkar, S. H., and A. G. Knudson. Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst. 66:1037–1052, 1981.

    CAS  PubMed  Google Scholar 

  70. Peng, H., T. Peng, J. Wen, D. A. Engler, R. K. Matsunami, J. Su, L. Zhang, C. C. Chang, and X. Zhou. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach. Bioinformatics. 30(13):1899–1907, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peng, H., J. G. Wen, H. W. Li, J. Chang, and X. Zhou. Drug inhibition profile prediction for NFκB pathway in multiple myeloma. PLoS One 6(3):e14750, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peng, H., J. Wen, H. Li, L. Zhang, C. C. Chang, Y. Zu, and X. Zhou. A systematic modeling study on the pathogenic role of p38 MAPK activation in myelodysplastic syndromes. Mol. BioSyst. 8(4):1366–1374, 2012.

    Article  CAS  PubMed  Google Scholar 

  73. Pritchard, J. R., P. M. Bruno, L. A. Gilbert, K. L. Capron, D. A. Lauffenburger, and M. T. Hemann. Defining principles of combination drug mechanisms of action. Proc. Natl. Acad. Sci. USA 110(2):E170–E179, 2013.

    Article  CAS  PubMed  Google Scholar 

  74. Qutub, A. A., F. Mac Gabhann, E. D. Karagiannis, P. Vempati, and A. S. Popel. Multi-scale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28:14–31, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Reardon, S. Organs-on-chips. Nature 423:266, 2015.

    Article  CAS  Google Scholar 

  76. Robertson-Tessi, M., R. J. Gillies, R. A. Gatenby, and A. R. Anderson. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 75:1567–1579, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rubinacci, S., A. Graudenzi, G. Caravagna, G. Mauri, J. Osborne, J. Pitt-Francis, and M. Antoniotti. CoGNaC: a Chaste plugin for the multiscale simulation of gene regulatory networks driving the spatial dynamics of tissues and cancer. Cancer Inform. 14(Suppl 4):53–65, 2015.

    PubMed  PubMed Central  Google Scholar 

  78. Sachs, J. R., K. Mayawala, S. Gadamsetty, S. P. Kang, and D. P. de Alwis. Optimal dosing for targeted therapies in oncology: drug development cases leading by example. Clin. Cancer Res. 22(6):1318–1324, 2016.

    Article  CAS  PubMed  Google Scholar 

  79. Schoeberl, B., E. A. Pace, J. B. Fitzgerald, B. D. Harms, L. Xu, L. Nie, B. Linggi, A. Kalra, V. Paragas, R. Bukhalid, V. Grantcharova, N. Kohli, K. A. West, M. Leszczyniecka, M. J. Feldhaus, A. J. Kudla, and U. B. Nielsen. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci. Signal. 2(77):ra31, 2009.

    Article  PubMed  CAS  Google Scholar 

  80. Schoeberl, B., E. Pace, S. Howard, V. Garantcharova, A. Kudla, P. K. Sorger, and U. B. Nielsen. A data-driven computational model of the ErbB receptor signaling network. Conf. Proc. IEEE Eng. Med Biol. Soc. 1:53–54, 2006.

    PubMed  Google Scholar 

  81. Shao, H. W., T. Peng, Z. Ji, and X. Zhou. Systematically studying kinase inhibitor induced signaling network signatures by integrating both therapeutic and side effects. PLoS One 8(12):e80832, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sharan, S., and S. Woo. Systems pharmacology approaches for optimization of antiangiogenic therapies: challenges and opportunities. Front Pharmacol. 6:33, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sherwin, C. M., T. K. Kiang, M. G. Spigarelli, and M. H. Ensom. Fundamentals of population pharmacokinetic modelling: validation methods. Clin. Pharmacokinet. 51(9):573–590, 2012.

    Article  PubMed  Google Scholar 

  84. Sorger, P. K., S. R. B. Allerheiligen, D. R. Abernethy, R. B. Altman, K. L. R. Brouwer, A. Califano, D. Z. D’Argenio, R. Iyengar, W. J. Jusko, R. Lalonde, D. A. Lauffenburger, B. Shoichet, J. L. Stevens, S. Subramaniam, P. Van der Graaf, P. Vicini, and R. War. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms: An NIH white paper by the QSP workshop group. Bethesda: NIH, 2011. http://www.nigms.nih.gov/News/reports/Documents/SystemsPharmaWPSorger2011.pdf

  85. Su, J., L. Zhang, W. Zhang, D. S. Choi, J. Wen, B. Jiang, C. C. Chang, and X. Zhou. Targeting the biophysical properties of the myeloma initiating cell niches: a pharmaceutical synergism analysis using multi-scale agent-based modeling. PLoS One. 9(1):e85059, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sun, X., J. Bao, K. C. Nelson, K. C. Li, G. Kulik, and X. Zhou. Systems modeling of anti-apoptotic pathways in prostate cancer: psychological stress triggers a synergism pattern switch in drug combination therapy. PLoS Comput. Biol. 9(12):e1003358, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sun, X., J. Su, J. Bao, T. Peng, L. Zhang, Y. Zhang, and X. Zhou. Cytokine combination therapy prediction for bone remodeling in tissue engineering based on the intracellular signaling pathway. Biomaterials. 33(33):8265–8276, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Swanson, K. R., R. C. Rostomily, and E. C. Alvord. A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br. J. Cancer. 98(1):113–119, 2008.

    Article  CAS  PubMed  Google Scholar 

  89. Tang, J., and T. Aittokallio. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr. Pharm. Des. 20(1):23–36, 2014.

    Article  CAS  PubMed  Google Scholar 

  90. Tang, L., J. Su, D.-S. Huang, D. Y. Lee, K. C. Li, and X. Zhou. An integrated multiscale mechanistic model for cancer drug therapy. ISRN Biomath. 2:1–12, 2012.

    Article  Google Scholar 

  91. Tatonetti, N. P., T. Y. Liu, and R. B. Altman. Predicting drug side-effects by chemical systems biology. Genome Biol. 10(9):238, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Upton, R. N., and D. R. Mould. Basic concepts in population modeling, simulation, and model-based drug development: part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacomet. Syst. Pharmacol. 3:e88, 2014.

    Article  CAS  Google Scholar 

  93. Venkatakrishnan, K., L. E. Friberg, D. Ouellet, J. T. Mettetal, A. Stein, I. F. Trocóniz, R. Bruno, N. Mehrotra, J. Gobburu, and D. R. Mould. Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities. Clin. Pharmacol. Ther. 97(1):37–54, 2015.

    Article  CAS  PubMed  Google Scholar 

  94. Visser, S. A., D. P. de Alwis, T. Kerbusch, J. A. Stone, and S. R. Allerheiligen. Implementation of quantitative and systems pharmacology in large pharma. CPT Pharmacomet. Syst Pharmacol. 3:e142, 2014.

    Article  CAS  Google Scholar 

  95. Wang, Z., J. D. Butner, R. Kerketta, V. Cristini, and T. S. Deisboeck. Simulating cancer growth with multiscale agent-based modeling. Semin. Cancer Biol. 30:70–78, 2015.

    Article  PubMed  CAS  Google Scholar 

  96. Weis, J. A., M. I. Miga, L. R. Arlinghaus, X. Li, A. B. Chakravarthy, V. Abramson, J. Farley, and T. E. Yankeelov. A mechanically coupled reaction-diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy. Phys. Med. Biol. 58(17):5851–5866, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wirtz, D., K. Konstantopoulos, and P. C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11(7):512–522, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, M., M. Sirota, A. J. Butte, and B. Chen. Characteristics of drug combination therapy in oncology by analyzing clinical trial data on ClinicalTrials.gov. Pac. Symp. Biocomput. 2015:68–79, 2015.

    Google Scholar 

  99. Xie, L., J. Li, and P. E. Bourne. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput. Biol. 5(5):e1000387, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Xu, F., J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 6:204–212, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yankeelov, T. E., R. G. Abramson, and C. C. Quarles. Quantitative multimodality imaging in cancer research and therapy. Nat. Rev. Clin. Oncol. 11(11):670–680, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yankeelov, T. E., N. Atuegwu, D. Hormuth, J. A. Weis, S. L. Barnes, M. I. Miga, E. C. Rericha, and V. Quaranta. Clinically relevant modeling of tumor growth and treatment response. Sci. Transl. Med. 5(187):187ps9, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yankeelov, T. E., V. Quaranta, K. J. Evans, and E. C. Rericha. Toward a science of tumor forecasting for clinical oncology. Cancer Res. 75(6):918–923, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the NIH for funding through U01CA174706 (TEY), 1R01-GM-115839 and P30-DK-42086 (GA), 1U01CA166886 (XZ), French National Research Agency ANR-10-IDEX-03-02 (OS), R01CA138264 (ASP), U01CA152926 (EGL), U01EB016422 (GMG), and CPRIT RR160005 (T.E.Y.). T.E.Y. is a CPRIT Scholar in Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Yankeelov.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yankeelov, T.E., An, G., Saut, O. et al. Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success. Ann Biomed Eng 44, 2626–2641 (2016). https://doi.org/10.1007/s10439-016-1691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1691-6

Keywords

Navigation