Skip to main content
Log in

Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to identify the patient-specific material properties of ascending thoracic aortic aneurysms (ATAA) using preoperative dynamic gated computed tomography (CT) scans. The identification is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and gated CT measurements of the aneurysm volume at respectively systole and cardiac mid-cycle. The method is applied on five patients who underwent surgical repair of their ATAA at the University Hospital Center of St. Etienne. For these patients, the aneurysms were collected and tested mechanically using an in vitro bench. For the sake of validation, the mechanical properties found using the in vivo approach and the in vitro bench were compared. We eventually performed finite-element stress analyses based on each set of material properties. Rupture risk indexes were estimated and compared, showing promising results of the patient-specific identification method based on gated CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Avril, S., S. Evans, and K. Miller. Inverse problems and material identification in tissue biomechanics. J. Mech. Behav. Biomed. Mater. 27:129–131, 2013.

    Article  PubMed  Google Scholar 

  2. Azadani, A. N., S. Chitsaz, A. Mannion, A. Mookhoek, A. Wisneski, J. M. Guccione, M. D. Hope, L. Ge, and E. E. Tseng. Biomechanical properties of human ascending thoracic aortic aneurysms. Ann. Thorac. Surg. 96:50–58, 2013.

    Article  PubMed  Google Scholar 

  3. Badel, P., S. Avril, S. Lessner, and M. Sutton. Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model. Comput. Methods Biomech. Biomed. Eng. 15(1):37–48, 2012.

    Article  Google Scholar 

  4. Carew, T. E., R. N. Vaishnav, and D. J. Patel. Compressibility of the arterial wall. Circ. Res. 23:61–68, 1968.

    Article  PubMed  CAS  Google Scholar 

  5. Chau, K. H., and J. A. Elefteriades. Natural history of thoracic aortic aneurysms: size matters, plus moving beyond size. Prog. Cardiovasc. Dis. 56(1):74–80, 2013.

    Article  PubMed  Google Scholar 

  6. Coady, M. A., J. A. Rizzo, G. L. Hammond, G. S. Kopf, and J. A. Elefteriades. Surgical intervention criteria for thoracic aortic aneurysms: a study of growth rates and complications. Ann. Thorac. Surg. 67:1922–1926, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Coady, M. A., J. A. Rizzo, G. L. Hammond, D. Mandapati, U. Darr, G. S. Kopf, and J. A. Elefteriades. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J. Thorac. Cardiovasc. Surg. 113(3):476–491, 1997.

    Article  PubMed  CAS  Google Scholar 

  8. Davies, R. R., L. J. Goldstein, M. A. Coady, S. L. Tittle, J. A. Rizzo, G. S. Kopf, and J. A. Elefteriades. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac. Surg. 73:17–28, 2002.

    Article  PubMed  Google Scholar 

  9. Davis, F. M., Y. Luo, S. Avril, A. Duprey, and J. Lu. Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms. Biomech. Model. Mechanobiol. 2015. doi:10.1007/s10237-014-0646-9.

    PubMed  Google Scholar 

  10. Demiray, H. A note on the elasticity of soft biological tissues. J. Biomech. 5:309–311, 1972.

    Article  PubMed  CAS  Google Scholar 

  11. Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.

    Article  PubMed  Google Scholar 

  12. Doyle, B. J., A. J. Cloonan, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43(7):1408–1416, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Doyle, B. J., J. Killion, and A. Callanan. Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models. J. Biomech. 45(10):1759–1768, 2012.

    Article  PubMed  Google Scholar 

  14. Elefteriades, J., and E. Farkas. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55(9):841–857, 2010.

    Article  PubMed  CAS  Google Scholar 

  15. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4):724–732, 2003.

    Article  PubMed  Google Scholar 

  16. Forsell, C., Björck, H.M., Eriksson, P., Fraco-Cereceda, A., and Gasser, T. C. Aneurysmal wall: differences between bicuspid aortic valve and tricuspid aortic valve patients. Ann. Thorac. Surg., In press, 2014

  17. Franquet, A., S. Avril, R. Le Riche, and P. Badel. Identification of heterogeneous elastic properties in stenosed arteries: a numerical plane strain study. Comput. Methods Biomech. Biomed. Eng. 15(1):49–58, 2012.

    Article  Google Scholar 

  18. Franquet, A., S. Avril, R. Le Riche, P. Badel, F. C. Schneider, Z. Y. Li, C. Boissier, and J. P. Favre. A new method for the in vivo identification of mechanical properties in arteries from cine MRI images: theoretical framework and validation. IEEE Trans. Med. Imaging 32(8):1448–1461, 2013.

    Article  PubMed  Google Scholar 

  19. Frydrychowicz, A., A. F. Stalder, M. F. Russe, J. Bock, S. Bauer, A. Harloff, A. Berger, M. Langer, J. Hennig, and M. Markl. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J. Magn. Reson. Imaging 30(1):77–84, 2009.

    Article  PubMed  Google Scholar 

  20. Hartnell, G. G. Imaging of aortic aneurysms and dissection: CT and MRI. J. Thorac. Imaging 16:35–46, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Humphrey, J. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs . New York: Springer, 2002.

    Book  Google Scholar 

  22. Humphrey, J. D., D. M. Milewicz, G. Tellides, and M. A. Schwartz. Dysfunctional mechanosensing in aneurysms. Science 344:477, 2014.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Johansson, G., U. Markström, and J. Swedenborg. Ruptured thoracic aortic aneurysms: a study of incidence and mortality rates. J. Vasc. Surg. 21(6):985–988, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Juvonen, T., M. A. Ergin, J. D. Galla, S. L. Lansman, K. H. Nguyen, J. N. Mccullough, D. Levy, R. A. de Asla, C. A. Bodian, and R. B. Griepp. Prospective study of the natural history of thoracic aortic aneurysms. Ann. Thorac. Surg. 4975(97):1533–1545, 1997.

    Article  Google Scholar 

  25. Kim, J. H., S. Avril, A. Duprey, and J. P. Favre. Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique. Biomech. Model. Mechanobiol. 11(6):841–853, 2012.

    Article  PubMed  Google Scholar 

  26. Kontopodis, N., E. Georgakarakos, E. Metaxa, A. Pagonidis, Y. Papaharilaou, and C. V. Yoannou. Estimation of wall properties and wall strength of aortic aneurysms using modern imaging techniques. One more step towards a patient-specific assessment of aneurysm rupture risk. Med. Hypotheses 81:212–215, 2013.

    Article  PubMed  Google Scholar 

  27. Lago, M. A., Ruperez, M. J., Martinez-Martinez, F., and Monserrat, C. Genetic algorithms for estimating the biomechanical behavior of breast tissues. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2014, pp. 760–763

  28. Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3):693–696, 2007.

    Article  PubMed  Google Scholar 

  29. Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13(7):1–22, 2011.

    Google Scholar 

  30. Martínez-Martínez, F., M. J. Rupérez, J. D. Martín-Guerrero, C. Monserrat, M. A. Lago, E. Pareja, S. Brugger, and R. López-Andújar. Estimation of the elastic parameters of human liver biomechanical models by means of medical images and evolutionary computation. Comput. Methods Progr. Biomed. 111(3):537–549, 2013.

    Article  Google Scholar 

  31. Martufi, G., M. Auer, J. Roy, J. Swedenborg, N. Sakalihasan, G. Panuccio, and T. C. Gasser. Multidimensional growth measurements of abdominal aortic aneurysms. J. Vasc. Surg. 58(3):748–755, 2013.

    Article  PubMed  Google Scholar 

  32. Martufi, G., T. C. Gasser, J. J. Appoo, and E. S. Di Martino. Mechano-biology in the thoracic aortic aneurysm: a review and case study. Biomech. Model. Mechanobiol. 13(5):917–928, 2014.

    Article  PubMed  CAS  Google Scholar 

  33. McGloughlin, T. Biomechanics and Mechanobiology of Aneurysms. Berlin: Springer, 2011.

    Book  Google Scholar 

  34. Miller, K., and J. Lu. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J. Mech. Behav. Biomed. Mater. 27:154–166, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nelder, J. A., and R. Mead. A Simplex Method for Function Minimization. Comput. J. 7(4):308–313, 1965.

    Article  Google Scholar 

  36. Neter, J., M. Kutner, W. Wasserman, and C. Nachtsheim. Applied linear statistical models. Irwin: Mc Graw Hill, 1996.

    Google Scholar 

  37. O’Leary, S. A., B. J. Doyle, and T. M. McGloughlin. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J. Biomech. 46(11):1955–1960, 2013.

    Article  PubMed  Google Scholar 

  38. Peattie, R. A., C. L. Asbury, E. I. Bluth, and T. J. Riehle. Steady flow in models of abdominal aortic aneurysms. Part II: Wall stresses and their implication for in vivo thrombosis and rupture. J. Ultrasound Med. 15:689–696, 1996.

    PubMed  CAS  Google Scholar 

  39. Peattie, R. A., T. J. Riehle, and E. I. Bluth. Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. J. Biomech. Eng. 126(4):438–446, 2004.

    Article  PubMed  Google Scholar 

  40. Raghavan, M. L., D. A. Vorp, M. P. Federle, M. S. Makaroun, and M. W. Webster. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31(4):760–769, 2000.

    Article  PubMed  CAS  Google Scholar 

  41. Reeps, C., A. Maier, J. Pelisek, F. Härtl, V. Grabher-Meier, W. A. Wall, M. Essler, H.-H. Eckstein, and M. W. Gee. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech. Model Mechanobiol. 12(4):717–733, 2013.

    Article  PubMed  CAS  Google Scholar 

  42. Richards, J. M., S. I. Semple, T. J. MacGillivray, C. Gray, J. P. Langrish, M. Williams, M. Dweck, W. Wallace, G. McKillop, R. T. Chalmers, O. J. Garden, and D. E. Newby. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ. Cardiovasc. Imaging 4:274–281, 2011.

    Article  PubMed  Google Scholar 

  43. Riveros, F., S. Chandra, E. A. Finol, T. C. Gasser, and J. F. Rodrigues. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. Ann. Biomed. Eng. 41:694–708, 2013.

    Article  PubMed  Google Scholar 

  44. Riveros, F., G. Martufi, T. C. Gasser, and J. F. Rodriguez-Matas. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-015-1267-x.

    PubMed  Google Scholar 

  45. Roccabianca, S., C. Bellini, and J. D. Humphrey. Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J. R. Soc. Interface 11(97):20140397, 2014.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Rodriguez, J. F., G. Martufi, M. Doblaré, and E. A. Finol. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann. Biomed. Eng. 37(11):2218–2221, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Romo, A., P. Badel, A. Duprey, J.-P. Favre, and S. Avril. In vitro analysis of localized aneurysm rupture. J. Biomech. 47(3):607–616, 2014.

    Article  PubMed  Google Scholar 

  48. Ryan, B. Minitab Software. Pensilvania: State College, 1972.

    Google Scholar 

  49. Shang, E. K., E. Lai, A. M. Pouch, R. Hinmon, R. C. Gorman, J. H. Gorman, III, C. M. Sehgal, G. Ferrari, J. E. Bavaria, and B. M. Jackson. Validation of semiautomated and locally resolved aortic wall thickness measurements from computed tomography. J. Vasc. Surg. 61(4):1034–1040, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sundt, T. M. Indications for aortic aneurysmectomy: too many variables and not enough equations? J. Thorac. Cardiovasc. Surg. 145(3 Suppl):S126–S129, 2013.

    Article  PubMed  Google Scholar 

  51. Teng, Z., Feng, J., Zhang, Y., Huang, Y., Sutcliffe, M. P. F., Brown, A. J., Jing, Z., Gillard, J. H., Lu, Q. Layer-and direction-specific material properties, extreme extensibility and ultimate material strength of human abdominal aorta and aneurysm: a uniaxial extension study. Ann. Biomed. Eng. 1–15, 2015.

  52. Tierney, A. P., A. Callanan, and T. M. McGloughlin. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk. J. Endovasc. Ther. 19(1):100–114, 2012.

    Article  PubMed  Google Scholar 

  53. Trabelsi, O., F. M. Davis, J. F. Rodriguez-Matas, A. Duprey, and S. Avril. Patient specific stress and rupture analysis of ascending thoracic aneurysms. J. Biomech. 2015. doi:10.1016/j.jbiomech.2015.04.035.

    PubMed  Google Scholar 

  54. Trabelsi, O., J. L. LópezVillalobos, A. Ginel, E. BarrotCortes, and M. Doblaré. A pre-operative planning for endoprosthetic human tracheal implantation: a decision support system based on robust design of experiments. Comput. Methods Biomech. Biomed. Eng. 17(7):750–767, 2012.

    Article  Google Scholar 

  55. Vallabhaneni, S. R., G. L. Gilling-Smith, T. V. How, S. D. Carter, J. A. Brennan, and P. L. Harris. Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms. J. Endovasc. Ther. 11:494502, 2004.

    Article  Google Scholar 

  56. Vande Geest, J. P., E. S. Di Martino, A. Bohra, M. S. Makaroun, and D. A. Vorp. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 11–21:2006, 1085.

    Google Scholar 

  57. Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vorp, D. A., B. J. Schiro, M. P. Ehrlich, T. S. Juvonen, M. A. Ergin, and B. P. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75:1210–1214, 2003.

    Article  PubMed  Google Scholar 

  59. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36(3):598–604, 2002.

    Article  PubMed  Google Scholar 

  60. Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 9(74):2047–2058, 2012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Wittek, A., K. Karatolios, P. Bihari, T. Schmitz-Rixen, R. Moosdorf, S. Vogt, and C. Blase. In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. J. Mech. Behav. Biomed. Mater. 27:167–183, 2013.

    Article  PubMed  Google Scholar 

  62. Zhao, X., X. Chen, and J. Lu. Pointwise identification of elastic properties in nonlinear hyperelastic membranes—Part II: Experimental validation. J. Appl. Mech. 76:061014, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Trabelsi.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, O., Duprey, A., Favre, JP. et al. Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms. Ann Biomed Eng 44, 84–98 (2016). https://doi.org/10.1007/s10439-015-1374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1374-8

Keywords

Navigation