Skip to main content
Log in

Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. ‘Soft’ 10% (w/w) and ‘stiff’ 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft—stiff hydrogel interface in multi-phase, bi-layer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function—the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Broom, N. D., and C. A. Poole. A functional morphological-study of the tidemark region of articular-cartilage maintained in a non-viable physiological condition. J. Anat. 135:65–82, 1982.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Bryant, S. J., R. J. Bender, K. L. Durand, and K. S. Anseth. Encapsulating Chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86:747–755, 2004.

    Article  CAS  PubMed  Google Scholar 

  3. Bullough, P., and J. Goodfellow. The significance of the fine structure of articular cartilage. J. Bone Joint Surg. Br. 50:852–857, 1968.

    CAS  PubMed  Google Scholar 

  4. Burdick, J. A., and K. S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Caliari, S. R., and B. A. Harley. Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals. Tissue Eng. Part A 20:2463–2472, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Caliari, S. R., and B. A. Harley. Structural and biochemical modification of a collagen scaffold to selectively enhance MSC tenogenic, chondrogenic, and osteogenic differentiation. Adv. Healthc. Mater. 3:1086–1096, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Caliari, S. R., D. W. Weisgerber, M. A. Ramirez, D. O. Kelkhoff, and B. A. Harley. The influence of collagen-glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability. J. Mech. Behav. Biomed. Mater. 11:27–40, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Caliari, S. R., L. C. Mozdzen, O. Armitage, M. L. Oyen, and B. A. Harley. Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. J. Biomed. Mater. Res. A 102:917–927, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Caliari, S. R., D. W. Weisgerber, W. K. Grier, Z. Mahmassani, M. D. Boppart, and B. A. Harley. Collagen scaffolds incorporating coincident gradations of instructive structural and biochemical cues for osteotendinous junction engineering. Adv. Healthc. Mater. 4:831–837, 2015.

  10. Campbell, S. E., V. L. Ferguson, and D. C. Hurley. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation. Acta Biomater. 8:4389–4396, 2012.

    Article  CAS  PubMed  Google Scholar 

  11. Carter, D. R., G. S. Beaupré, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res.® 427:S69–S77, 2004.

    Article  Google Scholar 

  12. Chawla, K. K. Composite Materials Science and Engineering. New York: Springer, 2012.

    Google Scholar 

  13. Coburn, J., M. Gibson, P. A. Bandalini, C. Laird, H. Q. Mao, L. Moroni, D. Seliktar, and J. Elisseeff. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct. Syst. 7:213–222, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Coburn, J. M., M. Gibson, S. Monagle, Z. Patterson, and J. H. Elisseeff. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc. Natl. Acad. Sci. USA 109:10012–10017, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cui, W., Q. Wang, G. Chen, S. Zhou, Q. Chang, Q. Zuo, K. Ren, and W. Fan. Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J. Biosci. Bioeng. 111:493–500, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Duan, P., Z. Pan, L. Cao, Y. He, H. Wang, Z. Qu, J. Dong, and J. Ding. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J. Biomed. Mater. Res. A 102:180–192, 2013.

    Article  PubMed  Google Scholar 

  17. Farrell, E., F. J. O’Brien, P. Doyle, J. Fischer, I. Yannas, B. A. Harley, B. O’Connell, P. J. Prendergast, and V. A. Campbell. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng. 12:459–468, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Ferguson, V. L., A. J. Bushby, and A. Boyde. Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203:191–202, 2003.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Galperin, A., R. A. Oldinski, S. J. Florczyk, J. D. Bryers, M. Q. Zhang, and B. D. Ratner. Integrated bi-layered scaffold for osteochondral tissue engineering. Adv. Healthc. Mater. 2:872–883, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gotterbarm, T., W. Richter, M. Jung, S. Berardi Vilei, P. Mainil-Varlet, T. Yamashita, and S. J. Breusch. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 27:3387–3395, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Guo, X., J. Liao, H. Park, A. Saraf, R. M. Raphael, Y. Tabata, F. K. Kasper, and A. G. Mikos. Effects of TGF-beta 3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater. 6:2920–2931, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Halpin Affdl, J. C., and J. L. Kardos. The Halpin-Tsai equations. Polymer Sci. Eng. 16:344–352, 1976.

    Article  Google Scholar 

  23. Harley, B. A., J. H. Leung, E. Silva, and L. J. Gibson. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomater. 3:463–474, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Harley, B. A., A. K. Lynn, Z. Wissner-Gross, W. Bonfield, I. V. Yannas, and L. J. Gibson. Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. Part A 92A:1078–1093, 2010.

    CAS  Google Scholar 

  25. Hashin, Z., and S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11:127–140, 1963.

    Article  Google Scholar 

  26. Hortensius, R. A., and B. A. Harley. The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials 34:7645–7652, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Im, G. I., J. H. Ahn, S. Y. Kim, B. S. Choi, and S. W. Lee. A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng. Part A 16:1189–1200, 2010.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, C. C., H. Chiang, C. J. Liao, Y. J. Lin, T. F. Kuo, C. S. Shieh, Y. Y. Huang, and R. S. Tuan. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J. Orthop. Res. 25:1277–1290, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. Jin, G. Z., J. J. Kim, J. H. Park, S. J. Seo, J. H. Kim, E. J. Lee, and H. W. Kim. Biphasic nanofibrous constructs with seeded cell layers for osteochondral repair. Tissue Eng. Part C Methods 20:895–904, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Kandel, R. A., M. Grynpas, R. Pilliar, J. Lee, J. Wang, S. Waldman, P. Zalzal, M. Hurtig, and C. B. S. T. Team. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model. Biomaterials 27:4120–4131, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Khanarian, N. T., N. M. Haney, R. A. Burga, and H. H. Lu. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33:5247–5258, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Khanarian, N. T., J. Jiang, L. Q. Wan, V. C. Mow, and H. H. Lu. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng. Part A 18:533–545, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lee, J. C., C. Pereira, X. Ren, W. Huang, D. W. Weisgerber, D. T. Yamaguchi, B. A. Harley, and T. A. Miller. Optimizing collagen scaffolds for bone engineering: effects of crosslinking and mineral content on structural contraction and osteogenesis. J. Craniofac. Sur. 2015. http://journals.lww.com/jcraniofacialsurgery/toc/publishahead.

  34. Lin, D. C., D. I. Shreiber, E. K. Dimitriadis, and F. Horkay. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 8:345–358, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lin-Gibson, S., S. Bencherif, J. A. Cooper, S. J. Wetzel, J. M. Antonucci, B. M. Vogel, F. Horkay, and N. R. Washburn. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules 5:1280–1287, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. Lopa, S., and H. Madry. Bioinspired Scaffolds for osteochondral regeneration. Tissue Eng. Part A 20:2052–2076, 2014.

    Article  PubMed  Google Scholar 

  37. Lu, S., J. Lam, J. E. Trachtenberg, E. J. Lee, H. Seyednejad, J. J. den van Beucken, Y. Tabata, M. E. Wong, J. A. Jansen, A. G. Mikos, and F. K. Kasper. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35:8829–8839, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lynn, A. K., S. M. Best, R. E. Cameron, B. A. Harley, I. V. Yannas, L. J. Gibson, and W. Bonfield. Design of a multiphase osteochondral scaffold. I. Control of chemical composition. J. Biomed. Mater. Res. Part A 92A:1057, 2010.

    CAS  Google Scholar 

  39. Mente, P. L., and J. L. Lewis. Elastic-modulus of calcified cartilage is an order of magnitude less-than that of subchondral bone. J. Orthop. Res. 12:637–647, 1994.

    Article  CAS  PubMed  Google Scholar 

  40. Mohan, N., V. Gupta, B. Sridharan, A. Sutherland, and M. S. Detamore. The potential of encapsulating “raw materials” in 3D osteochondral gradient scaffolds. Biotechnol. Bioeng. 111:829–841, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Moutos, F. T., and F. Guilak. Composite scaffolds for cartilage tissue engineering. Biorheology 45:501–512, 2008.

    PubMed Central  PubMed  Google Scholar 

  42. Nicodemus, G. D., S. C. Skaalure, and S. J. Bryant. Gel structure impacts pericellular and extracellular matrix deposition which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels. Acta Biomater. 7:492–504, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. O’Brien, F. J., B. A. Harley, I. V. Yannas, and L. Gibson. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086, 2004.

    Article  PubMed  Google Scholar 

  44. O’Brien, F. J., B. A. Harley, I. V. Yannas, and L. J. Gibson. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441, 2005.

    Article  PubMed  Google Scholar 

  45. Roberts, J. J., A. Earnshaw, V. L. Ferguson, and S. J. Bryant. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. B Appl. Biomater. 99:158–169, 2011.

    Article  PubMed  Google Scholar 

  46. Roberts, J. J., G. D. Nicodemus, E. C. Greenwald, and S. J. Bryant. Degradation improves tissue formation in (Un)Loaded chondrocyte-laden hydrogels. Clin. Orthop. Relat. Res. 469:2725–2734, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sharma, B., C. G. Williams, M. Khan, P. Manson, and J. H. Elisseeff. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast. Reconstr. Surg. 119:112–120, 2007.

    Article  CAS  PubMed  Google Scholar 

  48. Sherwood, J. K., S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen, and A. Ratcliffe. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751, 2002.

    Article  CAS  PubMed  Google Scholar 

  49. Shimomura, K., Y. Moriguchi, C. D. Murawski, H. Yoshikawa, and N. Nakamura. Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. Tissue Eng. Part B Rev. 20:463–476, 2014.

    Article  Google Scholar 

  50. Steinmetz, N. J., E. A. Aisenbrey, K. K. Westbrook, H. J. Qi, and S. J. Bryant. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater. 2015. doi:10.1016/j.actbio.2015.04.015.

  51. Vickers, S. M., L. S. Squitieri, and M. Spector. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: Dynamic pore reduction promotes cartilage formation. Tissue Eng. 12:1345–1355, 2006.

    Article  CAS  PubMed  Google Scholar 

  52. Villanueva, I., D. S. Hauschulz, D. Mejic, and S. J. Bryant. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities. Osteoarthr. Cartil. 16:909–918, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Wang, D. A., C. G. Williams, F. Yang, N. Cher, H. Lee, and J. H. Elisseeff. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng. 11:201–213, 2005.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X., E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, and D. L. Kaplan. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 134:81–90, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wang, Y., H. Meng, X. Yuan, J. Peng, Q. Guo, S. Lu, and A. Wang. Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering. Biomed. Eng. Online 13:80, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Weisgerber, D. W., D. O. Kelkhoff, S. R. Caliari, and B. A. Harley. The impact of discrete compartments of a multi-compartment collagen-GAG scaffold on overall construct biophysical properties. J. Mech. Behav. Biomed. Mater. 28:26–36, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Wong, M., and D. R. Carter. Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13, 2003.

    Article  CAS  PubMed  Google Scholar 

  58. Yannas, I. V., E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. USA 86:933–937, 1989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Yannas, I. V., D. S. Tzeranis, B. A. Harley, and P. T. So. Biologically active collagen-based scaffolds: advances in processing and characterization. Philos. Trans. A Math. Phys. Eng. Sci. 368:2123–2139, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yodmuang, S., S. L. McNamara, A. B. Nover, B. B. Mandal, M. Agarwal, T. A. Kelly, P. H. Chao, C. Hung, D. L. Kaplan, and G. Vunjak-Novakovic. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 11:27–36, 2015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was partially supported by the University of Colorado Innovative Seed Grant Program and NSF CAREER Award CBET #1055989 (K.R.C.K., A.N., M.S., V.L.F.); NSF CAREER Award DMR #0847390 (A.H.A., S.J.B.), NIH R21 AR063331 (L.C.M., B.A.C.H), and a NIH Pharmaceutical Biotechnology Training fellowship to A.H.A. Imaging experiments were performed in the University of Colorado Anschutz Medical Campus Advanced Light Microscopy Core supported in part by NIH/NCATS Colorado CTSI Grant #UL1 TR001082. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or NSF. The authors also thank Dr. Justine J. Roberts for assistance related to hydrogel synthesis and Rachael C. Paietta for contributions to mechanical testing methods and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Ferguson.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinneberg, K.R.C., Nelson, A., Stender, M.E. et al. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Ann Biomed Eng 43, 2618–2629 (2015). https://doi.org/10.1007/s10439-015-1337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1337-0

Keywords

Navigation