Skip to main content

Advertisement

Log in

In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical interactions during angiogenesis, i.e., traction applied by neovessels to the extracellular matrix and the corresponding deformation, are important regulators of growth and neovascularization. We have previously designed, implemented, and validated a coupled model of angiogenesis in which a discrete microvessel growth model interacts with a continuous finite element mesh through the application of local remodeling sprout stresses (Edgar et al. in Biomech Model Mechanobiol, 2014). However, the initial implementation of this framework does not take matrix density into account when determined these remodeling stresses and is therefore insufficient for the study of angiogenesis within heterogeneous matrix environments such as those found in vivo. The objective of this study was to implement sensitivity to matrix density in the active stress generation within AngioFE in order to allow the study of angiogenic growth within a heterogeneous density environment. We accomplished this by scaling active sprout stresses relative to local matrix density using a scaling factor previously determined from experimental data. We then exercised the new functionality of the model by simulating angiogenesis within four different scenarios: homogeneous density, a narrow gap model, and matrix density gradient, and a construct subjected to repeated loading/unloading and preconditioning. These numerical experiments predicted heterogeneous matrix density in the initially homogeneous case, the closure and alignment of microvessels along a low-density gap, the formation of a unique cap-like structure during angiogenesis within a density gradient, and the alignment of microvessels in the absence of applied load due to preconditioning. The result of these in silico investigations demonstrate how matrix heterogeneity affects neovascularization and matrix deformation and provides a platform for studying angiogenesis in complicated and multi-faceted mechanical environments that microvessels experience in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Annex, B. H. Therapeutic angiogenesis for critical limb ischaemia. Nat. Rev. Cardiol. 10:387–396, 2013.

    Article  CAS  PubMed  Google Scholar 

  2. Aritan S, Oyadiji SO, and Bartlett RM. The in vivo mechanical properties of muscular bulk tissue. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, pp. 5259–5262, 2009.

  3. Ateshian, G. A., S. Maas, and J. A. Weiss. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J. Biomech. Eng. 135:111001, 2013.

    Article  PubMed  Google Scholar 

  4. Bouhadir, K. H., and D. J. Mooney. Promoting angiogenesis in engineered tissues. J. Drug Target. 9:397–406, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Califano, J., and C. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:122–132, 2008.

    Article  Google Scholar 

  6. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3:68–75, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chang, C. C., L. Krishnan, S. S. Nunes, K. H. Church, L. T. Edgar, et al. Determinants of microvascular network topologies in implanted neovasculatures. Arterioscler. Thromb. Vasc. Biol. 32:5–14, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Conway, E. M., D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49:507–521, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. Biomaterials 25:3699–3706, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Edgar, L. T., S. C. Sibole, C. J. Underwood, J. E. Guilkey, and J. A. Weiss. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput. Methods Biomech. Biomed. Eng. 16:790–801, 2013.

    Article  Google Scholar 

  11. Edgar, L. T., J. B. Hoying, U. Utzinger, C. J. Underwood, L. Krishnan, et al. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J. Biomech. Eng. 136:021001, 2014.

    Article  PubMed  Google Scholar 

  12. Edgar, L. T., S. A. Maas, J. E. Guilkey, and J. A. Weiss. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomech. Model. Mechanobiol. 2014. doi:10.1007/s10237-014-0635-z.

    PubMed  Google Scholar 

  13. Edgar, L. T., C. J. Underwood, J. E. Guilkey, J. B. Hoying, and J. A. Weiss. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One 9:e85178, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Folkman, J. Angiogenesis and angiogenesis inhibition: an overview. EXS. 79:1–8, 1997.

    CAS  PubMed  Google Scholar 

  15. Ghajar, C. M., X. Chen, J. W. Harris, V. Suresh, C. C. Hughes, et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J . 94:1930–1941, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ho, S. P., S. J. Marshall, M. I. Ryder, and G. W. Marshall. The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 28:5238–5245, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Hoying, J. B., C. A. Boswell, and S. K. Williams. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell. Dev. Biol. Anim. 32:409–419, 1996.

    Article  CAS  PubMed  Google Scholar 

  19. Khurana, R., M. Simons, J. F. Martin, and I. C. Zachary. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112:1813–1824, 2005.

    Article  PubMed  Google Scholar 

  20. Kim, B. S., E. J. Kim, J. S. Choi, J. H. Jeong, C. H. Jo, and Y. W. Cho. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J. Biomed. Mater. Res. A 102:4044–4054, 2014.

    Article  PubMed  Google Scholar 

  21. Kirilova, M., S. Stoytchev, D. Pashkouleva, and V. Kavardzhikov. Experimental study of the mechanical properties of human abdominal fascia. Med. Eng. Phys. 33:1–6, 2011.

    Article  PubMed  Google Scholar 

  22. Kniazeva, E., and A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297:C179–C187, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Kniazeva, E., S. Kachgal, and A. J. Putnam. Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng. A 17:905–914, 2011.

    Article  CAS  Google Scholar 

  24. Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7:e32572, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Krishnan, L., J. A. Weiss, M. D. Wessman, and J. B. Hoying. Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng. 10:241–252, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Krishnan, L., J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss. Interaction of angiogenic microvessels with the extracellular matrix. Am. J. Physiol. Heart Circ. Physiol. 293:H3650–H3658, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Krishnan, L., C. J. Underwood, S. Maas, B. J. Ellis, T. C. Kode, et al. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc. Res. 78:324–332, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lin, S., N. Sangaj, T. Razafiarison, C. Zhang, and S. Varghese. Influence of physical properties of biomaterials on cellular behavior. Pharm. Res. 28:1422–1430, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lu, H. H., and S. Thomopoulos. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15:201–226, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Maas SA. WinFiber3D. Musculoskeletal Research Laboratories, University of Utah. http://mrl.sci.utah.edu/software/winfiber3d. 2007–2011.

  32. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012.

    Article  PubMed  Google Scholar 

  33. Moffat, K. L., W. H. Sun, P. E. Pena, N. O. Chahine, S. B. Doty, et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. USA 105:7947–7952, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nirmalanandhan, V. S., N. Juncosa-Melvin, J. T. Shearn, G. P. Boivin, M. T. Galloway, et al. Combined effects of scaffold stiffening and mechanical preconditioning cycles on construct biomechanics, gene expression, and tendon repair biomechanics. Tissue Eng. A 15:2103–2111, 2009.

    Article  CAS  Google Scholar 

  35. Nishida, N., H. Yano, T. Nishida, T. Kamura, and M. Kojiro. Angiogenesis in cancer. Vasc. Health Risk Manag. 2:213–219, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. Phelps, E. A., and A. J. Garcia. Engineering more than a cell: vascularization strategies in tissue engineering. Curr. Opin. Biotechnol. 21:704–709, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pittman, R. N. Oxygen transport and exchange in the microcirculation. Microcirculation. 12:59–70, 2005.

    Article  CAS  PubMed  Google Scholar 

  39. Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.

    Article  PubMed  Google Scholar 

  40. Shiu, Y. T., J. A. Weiss, J. B. Hoying, M. N. Iwamoto, I. S. Joung, and C. T. Quam. The role of mechanical stresses in angiogenesis. Crit. Rev. Biomed. Eng. 33:431–510, 2005.

    Article  PubMed  Google Scholar 

  41. Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297:574–584, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. Tonnesen MG, Feng X, and Clark RA. Angiogenesis in wound healing. In: The Journal of Investigative Dermatology. Symposium Proceedings/the Society for Investigative Dermatology, Inc. [and] European Society for Dermatological Research, vol. 5, 2000, pp. 40–46.

  43. Underwood, C. J., L. T. Edgar, J. B. Hoying, and J. A. Weiss. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 307:H152–H164, 2014.

    Article  CAS  PubMed  Google Scholar 

  44. Vernon, R. B., and E. H. Sage. A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57:118–133, 1999.

    Article  CAS  PubMed  Google Scholar 

  45. Wood, G. C., and M. K. Keech. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem. J. 75:588–598, 1960.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Wu, J., Z. Mao, H. Tan, L. Han, T. Ren, and C. Gao. Gradient biomaterials and their influences on cell migration. Interface Focus. 2:337–355, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453, 2007.

    Article  CAS  PubMed  Google Scholar 

  48. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from National Institutes of Health #R01HL077683, R01GM083925 and R01EB015133 is gratefully acknowledged.

Conflict of interest

The authors state no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Weiss.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 30066 kb)

Supplementary material 2 (AVI 28269 kb)

Supplementary material 3 (AVI 28526 kb)

Supplementary material 4 (AVI 39882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edgar, L.T., Hoying, J.B. & Weiss, J.A. In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density. Ann Biomed Eng 43, 1531–1542 (2015). https://doi.org/10.1007/s10439-015-1334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1334-3

Keywords

Navigation