Skip to main content
Log in

Theoretical prediction for effective properties and progressive failure of textile composites: a generalized multi-scale approach

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A generalized analytical model is developed to predict progressive failure behavior of several types of textile composites, including plain weave composites, twill weave composites, two-dimensional tri-axially braided composites and warp-reinforced 2.5-dimensional braided composites. In this model, the unit cell (UC) of composite is firstly identified and reconstructed into a refined lamina structure with multiple equivalent lamina elements (ELEs) based on apt geometrical approximation and assumptions. Secondly, two-way coupled stress-strain responses within the UC (macro-scale) and ELE (meso-scale) are established through a universal series-parallel model (SPM). Finally, a progressive damage model, which consists of damage initiation criteria and a stiffness evolution strategy, is employed to predict damage behavior of the ELE. The analytical results including mechanical properties and progressive failure process are validated against the existing numerical and experimental ones in literature. The validated analytical model is then used to study the effects of global fiber volume fraction, braided angle, shear failure coefficient and selected failure criteria on stiffness, strength and failure process. The present results demonstrate the efficiency and generic capability of the present analytical model for predicting the mechanical responses of a range of textile composites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rouzegar, J., Abbasi, A.: A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators. Acta Mech. Sin. 34, 689–705 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Duan, Z., Yan, J., Lee, I., et al.: Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles. Acta Mech. Sin. 34, 1084–1094 (2018)

    Article  MathSciNet  Google Scholar 

  3. Strungar, E.M., Yankin, A.S., Zubova, E.M., et al.: Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission. Acta. Mech. Sin. 36, 448–459 (2020)

    Article  Google Scholar 

  4. Rafiee, R., Abbasi, F., Maleki, S., et al.: Fatigue analysis of a composite ring: Experimental and theoretical investigations. J. Compos. Mater (2020)

  5. Rafiee, R.: Stochastic fatigue analysis of glass fiber reinforced polymer pipes. Compos. Struct. 167, 96–102 (2017)

    Article  Google Scholar 

  6. Zhang, C., Li, N., Wang, W., et al.: Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos. Struct. 125, 104–116 (2015)

    Article  Google Scholar 

  7. Zhao, Z., Dang, H., Zhang, C., et al.: A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Compos. Appl. Sci. Manuf. 110, 113–125 (2018)

    Article  Google Scholar 

  8. Byun, J.H., Chou, T.W.: Elastic properties of three-dimensional angle-interlock fabric preforms. J. Text. Inst. 81, 538–548 (1990)

    Article  Google Scholar 

  9. Byun, J.H.: The analytical characterization of 2-D braided textile composites. Compos. Sci. Technol. 60, 705–716 (2000)

    Article  Google Scholar 

  10. Ishikawa, T., Chou, T.W.: Nonlinear Behavior of Woven Fabric Composites. J. Compos. Mater. 17, 399–413 (1983)

    Article  Google Scholar 

  11. Naik, N.K., Ganesh, V.K.: Failure behavior of plain weave fabric laminates under on-axis uniaxial tensile loading: II-analytical predictions. J. Compos. Mater. 30, 1779–1822 (1996)

    Article  Google Scholar 

  12. Huang, Z.: The mechanical properties of composites reinforced with woven and braided fabrics. Compos. Sci. Technol. 60, 479–498 (2000)

    Article  Google Scholar 

  13. Miravete, A., Bielsa, J.M., Chiminelli, A., et al.: 3D mesomechanical analysis of three-axial braided composite materials. Compos. Sci. Technol. 66, 2954–2964 (2006)

    Article  Google Scholar 

  14. Masters, J.E., Foye, R.L., Pastore, C.M., et al.: Mechanical properties of triaxially braided composites: experimental and analytical results. J. Compos. Technol. Res. 15, 112–122 (1993)

    Article  Google Scholar 

  15. Liu, K.C., Chattopadhyay, A., Bednarcyk, B., et al.: Efficient multiscale modeling framework for triaxially braided composites using generalized method of cells. J. Aerosp. Eng. 24, 162–169 (2011)

    Article  Google Scholar 

  16. Li, D., Lu, Z., Chen, L., et al.: Microstructure and mechanical properties of three-dimensional five-directional braided composites. Int. J. Solids. Struct. 46, 3422–3432 (2009)

    Article  MATH  Google Scholar 

  17. Deng, Y., Chen, X., Wang, H.: A multi-scale correlating model for predicting the mechanical properties of tri-axial braided composites. J. Reinf. Plast. Compos. 32, 1934–1955 (2013)

    Article  Google Scholar 

  18. Jing, M., Wu, J., Deng, Y., et al.: Ultimate strength prediction of two-dimensional tri-axial braided composites based on an analytical laminate model. J. Reinf. Plast. Compos. 37, 917–929 (2018)

    Article  Google Scholar 

  19. Zhao, Z., Liu, P., Chen, C., et al.: Modeling the transverse tensile and compressive failure behavior of triaxially braided composites. Compos. Sci. Technol. 172, 96–107 (2019)

    Article  Google Scholar 

  20. Dang, H., Zhao, Z., Liu, P., et al.: A new analytical method for progressive failure analysis of two-dimensional triaxially braided composites. Compos. Sci. Technol. 186, 107936 (2020)

    Article  Google Scholar 

  21. Cao, Y., Cai, Y., Zhao, Z., et al.: Predicting the tensile and compressive failure behavior of angle-ply spread tow woven composites. Compos. Struct. 234, 111701 (2019)

    Article  Google Scholar 

  22. Yang, G., Wang, X., Hou, C.: Damage behavior of plain woven composites considering undulation effect of fiber bundles. AMCS 37, 132–139 (2020)

    Google Scholar 

  23. Bai, J., Xiong, J., Shenoi, R.A., et al.: Analytical solutions for predicting tensile and in-plane shear strengths of triaxial weave fabric composites. Int. J. Solids Struct. 120, 199–212 (2017)

    Article  Google Scholar 

  24. Bai, J., Xiong, J., Liu, M., et al.: Analytical solutions for predicting tensile and shear moduli of triaxial weave fabric composites. Acta. Mech. Solids Sin. 29, 59–77 (2016)

    Article  Google Scholar 

  25. Gu, B.: Prediction of the uniaxial tensile curve of 4-step 3-dimensional braided preform. Compos. Struct. 64, 235–241 (2004)

    Article  Google Scholar 

  26. Midani, M., Seyam, A.F., Pankow, M.: A generalized analytical model for predicting the tensile behavior of 3D orthogonal woven composites using finite deformation approach. J. Text. Inst. 109, 1–12 (2018)

    Article  Google Scholar 

  27. Cheng, J.: Material Modeling of Strain Rate Dependent Polymer and 2D Triaxially Braided Composites. Ph.D. Dissertation, The University of Akron, Akron (2006)

  28. Xiong, J., Shenoi, R.A., Cheng, X.: A modified micromechanical curved beam analytical model to predict the tension modulus of 2D plain weave fabric composites. Compos. B Eng. 40, 776–783 (2009)

    Article  Google Scholar 

  29. Chamis, C.C.: Simplified composite micromechanics equations for strength, fracture toughness and environmental effects. SAMPE Q. 15, 41–55 (1984)

    Google Scholar 

  30. Wilhelmsson, D., Gutkin, R., Edgren, F., et al.: An experimental study of fibre waviness and its effects on compressive properties of unidirectional NCF composites. Compos. Appl. Sci. Manuf. 107, 665–674 (2018)

    Article  Google Scholar 

  31. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  32. Hou, J.P., Petrinic, N., Ruiz. C., et al.: Prediction of impact damage in composite plates. Compos. Sci. Technol. 60, 273–281 (2000)

  33. Li, X., Ma, D., Liu, H., et al.: Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact. Compos. Struct. 207, 727–739 (2018)

    Article  Google Scholar 

  34. Rafiee, R., Torabi, M.A., Maleki, S.: Investigating structural failure of a filament-wound composite tube subjected to internal pressure: experimental and theoretical evaluation. Polym. Test. 67, 322–330 (2018)

    Article  Google Scholar 

  35. Hwang, T.K., Hong, C.S., Kim, C.G.: Probabilistic deformation and strength prediction for a filament wound pressure vessel. Compos. B Eng. 34, 481–497 (2003)

    Article  Google Scholar 

  36. Rafiee, R., Habibagahi, M.R.: Evaluating mechanical performance of GFRP pipes subjected to transverse loading. Thin. Wall Struct. 131, 347–359 (2018)

  37. Fang, G., Liang, J., Wang, B.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89, 126–33 (2009)

    Article  Google Scholar 

  38. Jiang, H., Ren, Y., Zhang, S., et al.: Multi-scale finite element analysis for tension and ballistic penetration damage characterizations of 2D triaxially braided composite. J. Mater. Sci. 53, 10071–10094 (2018)

    Article  Google Scholar 

  39. Ganesh, V.K., Naik, N.K.: Failure behavior of plain weave fabric laminates under on-axis uniaxial tensile loading: i-laminate geometry. J. Compos. Mater. 30, 1779–1822 (1996)

    Article  Google Scholar 

  40. Xu, J., Lomov, S.V., Verpoest, I., et al.: A progressive damage model of textile composites on meso-scale using finite element method: static damage analysis. J. Compos. Mater. 48, 3091–3109 (2014)

    Article  Google Scholar 

  41. Carpintero, A.G., Herráez, M., Xu, J., et al.: A multi material shell model for the mechanical analysis of triaxial braided composites. Appl. Compos. Mater. 24, 1425–1445 (2017)

    Article  Google Scholar 

  42. Xiao, X., Kia, H.G., Gong, X.: Strength prediction of a triaxially braided composite. Compos. Appl. Sci. Manuf. 42, 1000–1006 (2011)

  43. Zhong, S., Guo, L., Liu, G., et al.: A continuum damage model for three-dimensional woven composites and finite element implementation. Compos. Struct. 128, 1–9 (2015)

    Article  Google Scholar 

  44. Zhong, S., Guo, L., Liu, G., et al.: A random waviness model for the stiffness and strength evaluation of 3D woven composites. Compos. Struct. 152, 24–1032 (2016)

    Article  Google Scholar 

  45. Nicoletto, G., Riva, E.: Failure mechanisms in twill-weave laminates: FEM predictions vs. experiments. Compos. Appl. Sci. Manuf. 35, 787–795 (2004)

  46. Li, X., Binienda, W.K., Littell, J.D.: Methodology for impact modeling of triaxial braided composites using shell elements. J. Aerosp. Eng. 22, 310–317 (2009)

    Article  Google Scholar 

  47. Deng, Y., Chen, X., Wang, H.: Predicting the failure behavior of textile composite laminates by using a multi-scale correlating approach. Appl. Compos. Mater. 22, 757–771 (2015)

    Article  Google Scholar 

  48. Richter, W.T., Hinterhölzl, R., Pinho, S.T.: Damage and failure of triaxial braided composites under multi-axial stress states. Compos. Sci. Technol. 150, 32–44 (2017)

    Article  Google Scholar 

  49. Richter, W.T., De Carvalho, N.V., Pinho, S.T.: Predicting the non-linear mechanical response of triaxial braided composites. Compos. Appl. Sci. Manuf. 114, 117–135 (2018)

    Article  Google Scholar 

  50. Littell, J.D.: The experimental and analytical characterization of the macromechanical response for triaxial braided composite materials. Ph.D. Dissertation, The University of Akron, Akron (2008)

  51. Chang, F.K., Chang, K.Y.: A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21, 834–855 (1987)

    Article  Google Scholar 

  52. Hoffman, O.: The brittle strength of orthotropic materials. J. Compos. Mater. 1, 200–206 (1967)

    Article  Google Scholar 

  53. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  54. Zako, M., Takano, N., Tsumura, T.: Numerical prediction of strength of notched UD laminates by analyzing the propagation of intra-and inter-laminar damage. J. Mater. Sci. 2, 117–122 (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. 11772267 and 12002111), the China Postdoctoral Science Foundation (Grant No. 2020M681101), the Shaanxi Key Research and Development Program for International Cooperation and Exchanges (Grant 2019KW-020), and the 111 Project (Grant BP0719007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Executive Editor: Jianxiang Wang.

Appendices

Appendix A

The transformation matrix \([{\varvec{R}}_{\mathrm {i}}] (i=1,2 \text { and } 3)\) has the following structural form:

$$\begin{aligned}&\left[ {\varvec{R}}_{\mathrm {i}}\right] \nonumber \\&=\left[ \begin{array}{cccccc} l_{1}^{2} &{} l_{2}^{2} &{} l_{3}^{2} &{} 2 l_{2} l_{3} &{} 2 l_{3} l_{1} &{} 2 l_{1} l_{2} \\ m_{1}^{2} &{} m_{2}^{2} &{} m_{3}^{2} &{} 2 m_{2} m_{3} &{} 2 m_{3} m_{1} &{} 2 m_{1} m_{2} \\ n_{1}^{2} &{} n_{2}^{2} &{} n_{3}^{2} &{} 2 n_{2} n_{3} &{} 2 n_{3} n_{1} &{} 2 n_{1} n_{2} \\ m_{1} n_{1} &{} m_{2} n_{2} &{} m_{3} n_{3} &{} m_{2} n_{3}+m_{3} n_{2} &{} n_{3} m_{1}+n_{1} m_{3} &{} m_{1} n_{2}+m_{2} n_{1} \\ n_{1} l_{1} &{} n_{2} l_{2} &{} n_{3} l_{3} &{} l_{2} n_{3}+l_{3} n_{2} &{} n_{3} l_{1}+n_{1} l_{3} &{} l_{1} n_{2}+l_{2} n_{1} \\ l_{1} m_{1} &{} l_{2} m_{2} &{} l_{3} m_{3} &{} l_{2} m_{3}+l_{3} m_{2} &{} l_{1} m_{3}+l_{3} m_{1} &{} l_{1} m_{2}+l_{2} m_{1} \end{array}\right] \nonumber \\ \end{aligned}$$
(A1)

The relevant elements in the transformation matrix \([{\varvec{R}}_{\mathrm {1}}]\) can be expressed as:

$$\begin{aligned} \left\{ \begin{array}{lll} l_{1}=\cos \left( \beta _{K}^{M}(x)\right) &{} l_{2}=0 &{} l_{3}=-\sin \left( \beta _{K}^{M}(x)\right) \\ m_{1}=0 &{} m_{2}=1 &{} m_{3}=0 \\ n_{1}=\sin \left( \beta _{K}^{M}(x)\right) &{} n_{2}=0 &{} n_{3}=\cos \left( \beta _{K}^{M}(x)\right) \end{array}\right. \end{aligned}$$
(A2)

where \(\sin (\beta _K^M(x))=\tan (\beta _K^M(x))/\sqrt{1+\tan ^2(\beta _K^M(x))}\) and \(\cos (\beta _K^M(x))\) \(=1/\sqrt{1+\tan ^2(\beta _K^M(x))}\), in which \(\tan (\beta _K^M(x))\) is given by Eq. (4).

The relevant elements in the transformation matrix \([{\varvec{R}}_{\mathrm {2}}]\) can be expressed as:

$$\begin{aligned} \left\{ \begin{array}{lll} l_{1}=\cos \left( \theta _{K}^{M}\right) &{} l_{2}=-\sin \left( \theta _{K}^{M}\right) &{} l_{3}=0 \\ m_{1}=\sin \left( \theta _{K}^{M}\right) &{} m_{2}=\cos \left( \theta _{K}^{M}\right) &{} m_{3}=0 \\ n_{1}=0, &{} n_{2}=0, &{} n_{3}=1 \end{array}\right. \end{aligned}$$
(A3)

The relevant elements in the transformation matrix \([{\varvec{R}}_{\mathrm {3}}]\) can be expressed as:

$$\begin{aligned} \left\{ \begin{array}{lll} l_{1}=\cos \left( \theta _{K}^{M}\right) &{} l_{2}=\sin \left( \theta _{K}^{M}\right) &{} l_{3}=0 \\ m_{1}=-\sin \left( \theta _{K}^{M}\right) &{} m_{2}=\cos \left( \theta _{K}^{M}\right) &{} m_{3}=0 \\ n_{1}=0 &{} n_{2}=0 &{} n_{3}=1 \end{array}\right. \end{aligned}$$
(A4)

where \(\theta _K^M\) denotes the braided angle, as shown in Fig.1.

Appendix B

The SPM for calculating the homogenized properties is presented here.

1.1 1. SPM-X model

The SPM-X model is used to obtain the homogenized properties of \(N_{\alpha }\) subcells stacked in X direction, as shown in Fig. 15a. The stress and strain components based on the series-parallel assumption can be expressed as:

$$\begin{aligned} \begin{array}{lll} \epsilon _{YY}^{\alpha }=\epsilon _{YY} &{}\quad \epsilon _{ZZ}^{\alpha }=\epsilon _{ZZ} &{}\quad \gamma _{YZ}^{\alpha }=\gamma _{YZ}\\ \sigma _{XX}^{\alpha }=\sigma _{XX} &{}\quad \tau _{XY}^{\alpha }=\tau _{XY} &{}\quad \tau _{XZ}^{\alpha }=\tau _{XZ} \quad \alpha =1,2,\cdots , N_{\alpha }\nonumber \\ \end{array}\\ \end{aligned}$$
(A5)

which leads to the following equilibrium and compatibility conditions:

$$\begin{aligned} \begin{array}{lll} \sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }\sigma _{YY}^{\alpha }=\sigma _{YY}&{}\quad \sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }\sigma _{ZZ}^{\alpha }=\sigma _{ZZ}&{}\quad \sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }\tau _{YZ}^{\alpha }=\tau _{YZ}\\ \sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }\epsilon _{XX}^{\alpha }=\epsilon _{XX}&{}\quad \sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }\gamma _{XY}^{\alpha }=\gamma _{XY}&{}\quad \sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }\gamma _{XZ}^{\alpha }=\gamma _{XZ}\nonumber \end{array}\!\!\!\!\!\!\\ \end{aligned}$$
(A6)

where \(k^{\alpha }\) denote the effective width ratios of each subcell. Solving these equations yields the formula for the effective stiffness matrix of the X model:

$$\begin{aligned} {\left\{ \begin{array}{ll} C_{11}&{}=P_1\prod _{\alpha =1}^{N_{\alpha }}C_{11}^{\alpha }\\ C_{12}&{}=P_1\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{12}^{\alpha }\left( \dfrac{\prod _{m=1}^{N_{\alpha }}C_{11}^{m}}{C_{11}^{\alpha }}\right) \\ C_{13}&{}=P_1\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{13}^{\alpha }\left( \dfrac{\prod _{m=1}^{N_{\alpha }}C_{11}^{m}}{C_{11}^{\alpha }}\right) \\ C_{21}&{}=P_1\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{21}^{\alpha }\left( \dfrac{\prod _{m=1}^{N_{\alpha }}C_{11}^{m}}{C_{11}^{\alpha }}\right) \\ C_{22}&{}=\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{22}^{\alpha }+P_1\sum _{\alpha =1}^{N_{\alpha }-1}\sum _{m=2}^{N_{\alpha }}k^{\alpha }k^{m} \\ &{} ~~\times \left[ \dfrac{\prod _{n=1}^{N_{\alpha }}C_{11}^{n}}{C_{11}^{\alpha }C_{11}^{m}}\right] \left( C_{21}^{\alpha }-C_{21}^{m}\right) \left( C_{12}^{m}-C_{12}^{\alpha }\right) \\ &{}\quad m\le \alpha , k^{\alpha }k^{m}=0 \\ C_{23}&{}=\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{23}^{\alpha }+P_1\sum _{\alpha =1}^{N_{\alpha }-1}\sum _{m=2}^{N_{\alpha }}k^{\alpha }k^{m} \\ &{} ~~\times \left[ \dfrac{\prod _{n=1}^{N_{\alpha }}C_{11}^{n}}{C_{11}^{\alpha }C_{11}^{m}}\right] \left( C_{21}^{\alpha }-C_{21}^{m}\right) \left( C_{13}^{m}-C_{13}^{\alpha }\right) \\ &{}\quad m\le \alpha , k^{\alpha }k^{m}=0\\ C_{31}&{}=P_1\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{31}^{\alpha }\left( \dfrac{\prod _{m=1}^{N_{\alpha }}C_{11}^{m}}{C_{11}^{\alpha }}\right) \\ C_{32}&{}=\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{32}^{\alpha }+P_1\sum _{\alpha =1}^{N_{\alpha }-1}\sum _{m=2}^{N_{\alpha }}k^{\alpha }k^{m} \\ &{} ~~\times \left[ \dfrac{\prod _{n=1}^{N_{\alpha }}C_{11}^{n}}{C_{11}^{\alpha }C_{11}^{m}}\right] \left( C_{31}^{\alpha }-C_{31}^{m}\right) \left( C_{12}^{m}-C_{12}^{\alpha }\right) \\ &{} \quad m\le \alpha , k^{\alpha }k^{m}=0\\ C_{33}&{}=\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{33}^{\alpha }+P_1\sum _{\alpha =1}^{N_{\alpha }-1}\sum _{m=2}^{N_{\alpha }}k^{\alpha }k^{m} \cdot \\ &{} ~~\left[ \dfrac{\prod _{n=1}^{N_{\alpha }}C_{11}^{n}}{C_{11}^{\alpha }C_{11}^{m}}\right] \left( C_{31}^{\alpha }-C_{31}^{m}\right) \left( C_{13}^{m}-C_{13}^{\alpha }\right) \\ &{} \quad m\le \alpha , k^{\alpha }k^{m}=0\\ C_{44}&{}=\sum _{\alpha =1}^{N_{\alpha }}k^{\alpha }C_{44}^{\alpha }\\ C_{55}&{}=P_2\prod _{\alpha =1}^{N_{\alpha }}C_{55}^{\alpha }\\ C_{66}&{}=P_3\prod _{\alpha =1}^{N_{\alpha }}C_{66}^{\alpha } \end{array}\right. } \end{aligned}$$
(A7)

with

$$\begin{aligned} {\left\{ \begin{array}{ll} P_{1}=\dfrac{1}{\left[ \sum _{\alpha =1}^{N_{\alpha }} k^{\alpha }\left( \frac{\prod _{m=1}^{N_{\alpha }}C_{11}^{m}}{C_{11}^{\alpha }}\right) \right] } \vspace{1mm}\\ P_{2}=\dfrac{1}{\left[ \sum _{\alpha =1}^{N_{\alpha }} k^{\alpha }\left( \frac{\prod _{m=1}^{N_{\alpha }}C_{55}^{m}}{ C_{55}^{\alpha }}\right) \right] }\vspace{1mm}\\ P_{3}=\dfrac{1}{\left[ \sum _{\alpha =1}^{N_{\alpha }} k^{\alpha }\left( \frac{\prod _{m=1}^{N_{\alpha }}C_{66}^{m}}{C_{66}^{\alpha }}\right) \right] } \end{array}\right. } \end{aligned}$$
(A8)

The strain components of each subcell can be expressed as:

$$\begin{aligned} {\left\{ \begin{array}{ll} \epsilon _{XX}^{\alpha }&{}=P_1\left( \frac{\prod _{m=1}^{N_{\alpha }}C_{11}^{m}}{C_{11}^{\alpha }}\right) \epsilon _{XX}\\ &{}~~+P_1\sum _{n=1}^{N_{\alpha }}k^{n}\left[ \frac{\prod _{l=1}^{N_{\alpha }}C_{11}^{l}}{C_{11}^{\alpha }C_{11}^n}\right] \\ &{}~~\times \left[ \left( C_{12}^{n}-C_{12}^{\alpha }\right) \epsilon _{YY}+\left( C_{13}^{n}-C_{13}^{\alpha }\right) \epsilon _{ZZ}\right] \\ &{} \quad n=\alpha , k^n=0,\\ \epsilon _{YY}^{\alpha }&{}=\epsilon _{YY}\\ \epsilon _{ZZ}^{\alpha }&{}=\epsilon _{ZZ}\\ \gamma _{YZ}^{\alpha }&{}=\gamma _{YZ}\\ \gamma _{XZ}^{\alpha }&{}=P_2\left( \dfrac{\prod _{m=1}^{N_{\alpha }}C_{55}^{m}}{C_{55}^{\alpha }}\right) \gamma _{XZ}\\ \gamma _{XY}^{\alpha }&{}=P_3\left( \dfrac{\prod _{m=1}^{N_{\alpha }}C_{66}^{m}}{C_{66}^{\alpha }}\right) \gamma _{XY}\\ \end{array}\right. } \end{aligned}$$
(A9)

1.2 2. SPM-Y model

The SPM-Y model is used to obtain the homogenized properties of \(N_{\beta }\) subcells stacked in Y direction, as shown in Fig. 15b. The stress and strain components based on the series-parallel assumption can be expressed as:

$$\begin{aligned} \begin{array}{lll} \epsilon _{XX}^{\beta }=\epsilon _{XX} &{}\quad \epsilon _{ZZ}^{\beta }=\epsilon _{ZZ} &{}\quad \gamma _{XZ}^{\beta }=\gamma _{XZ}\\ \sigma _{YY}^{\beta }=\sigma _{YY} &{}\quad \tau _{XY}^{\beta }=\tau _{XY} &{}\quad \tau _{YZ}^{\beta }=\tau _{YZ} \quad \beta =1,2,\cdots N_{\beta } \end{array} \end{aligned}$$
(A10)

which leads to the following equilibrium and compatibility conditions:

$$\begin{aligned} \begin{array}{lll} \sum _{\beta =1}^{N_{\beta }}k^{\beta }\sigma _{XX}^{\beta }=\sigma _{XX}&{}\quad \sum _{\beta =1}^{N_{\beta }}k^{\beta }\sigma _{ZZ}^{\alpha }=\sigma _{ZZ}&{}\quad \sum _{\beta =1}^{N_{\beta }}k^{\beta }\tau _{XZ}^{\beta }=\tau _{XZ}\\ \sum _{\beta =1}^{N_{\beta }}k^{\beta }\epsilon _{YY}^{\beta }=\epsilon _{YY}&{}\quad \sum _{\beta =1}^{N_{\beta }}k^{\beta }\gamma _{XY}^{\beta }=\gamma _{XY}&{}\quad \sum _{\beta =1}^{N_{\beta }}k^{\beta }\gamma _{YZ}^{\beta }=\gamma _{YZ} \end{array}\nonumber \\ \end{aligned}$$
(A11)

where \(k^{\beta }\) denote the effective width ratios of each subcell. Solving these equations yields the formula for the effective stiffness matrix of the Y model:

$$\begin{aligned} {\left\{ \begin{array}{ll} C_{11}=P_1\prod _{\beta =1}^{N_{\beta }}C_{11}^{\beta },\vspace{1mm}\\ C_{12}=P_1\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{12}^{\beta }\left( \dfrac{\prod _{m=1}^{N_{\beta }}C_{11}^{m}}{C_{11}^{\beta }}\right) \vspace{1mm}\\ C_{13}=P_1\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{13}^{\beta }\left( \dfrac{\prod _{m=1}^{N_{\beta }}C_{11}^{m}}{C_{11}^{\beta }}\right) \vspace{1mm}\\ \vspace{1mm}C_{21}=P_1\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{21}^{\beta }\left( \dfrac{\prod _{m=1}^{N_{\beta }}C_{11}^{m}}{C_{11}^{\beta }}\right) \\ C_{22}=\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{22}^{\beta }+P_1\sum _{\beta =1}^{N_{\beta }-1}\sum _{m=2}^{N_{\beta }}k^{\beta }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\beta }}C_{11}^{n}}{C_{11}^{\beta }C_{11}^{m}}\right] \cdot \\ ~~\left( C_{21}^{\beta }-C_{21}^{m}\right) \left( C_{12}^{m}-C_{12}^{\beta }\right) \quad m\le \beta , k^{\beta }k^{m}=0 \vspace{1mm}\\ C_{23}=\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{23}^{\beta }+P_1\sum _{\beta =1}^{N_{\beta }-1}\sum _{m=2}^{N_{\beta }}k^{\beta }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\beta }}C_{11}^{n}}{C_{11}^{\beta }C_{11}^{m}}\right] \cdot \\ ~~\left( C_{21}^{\beta }-C_{21}^{m}\right) \left( C_{13}^{m}-C_{13}^{\beta }\right) \quad m\le \beta , k^{\beta }k^{m}=0\vspace{1mm}\\ C_{31}=P_1\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{31}^{\beta }\left( \dfrac{\prod _{m=1}^{N_{\beta }}C_{11}^{m}}{C_{11}^{\beta }}\right) \\ C_{32}=\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{32}^{\beta }+P_1\sum _{\beta =1}^{N_{\beta }-1}\sum _{m=2}^{N_{\beta }}k^{\beta }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\beta }}C_{11}^{n}}{C_{11}^{\beta }C_{11}^{m}}\right] \cdot \\ ~~\left( C_{31}^{\beta }-C_{31}^{m}\right) \left( C_{12}^{m}-C_{12}^{\beta }\right) \quad m\le \beta , k^{\beta }k^{m}=0\vspace{1mm}\\ C_{33}=\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{33}^{\beta }+P_1\sum _{\beta =1}^{N_{\beta }-1}\sum _{m=2}^{N_{\beta }}k^{\beta }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\beta }}C_{11}^{n}}{C_{11}^{\beta }C_{11}^{m}}\right] \cdot \\ ~~\left( C_{31}^{\beta }-C_{31}^{m}\right) \left( C_{13}^{m}-C_{13}^{\beta }\right) , \quad m\le \beta , k^{\beta }k^{m}=0\vspace{1mm}\\ C_{44}=\sum _{\beta =1}^{N_{\beta }}k^{\beta }C_{44}^{\beta }\vspace{1mm}\\ C_{55}=P_2\prod _{\beta =1}^{N_{\beta }}C_{55}^{\beta }\vspace{1mm}\\ C_{66}=P_3\prod _{\beta =1}^{N_{\beta }}C_{66}^{\beta } \end{array}\right. }\nonumber \\ \end{aligned}$$
(A12)

with

$$\begin{aligned} {\left\{ \begin{array}{ll} P_{1}=\dfrac{1}{\left[ \sum _{\beta =1}^{N_{\beta }} k^{\beta }\left( \frac{\prod _{m=1}^{N_{\beta }} C_{11}^{m}}{C_{11}^{\beta }}\right) \right] } \\ P_{2}=\dfrac{1}{\left[ \sum _{\beta =1}^{N_{\beta }} k^{\beta }\left( \frac{\prod _{m=1}^{N_{\beta }} C_{55}^{m}}{C_{55}^{\beta }}\right) \right] } \\ P_{3}=\dfrac{1}{\left[ \sum _{\beta =1}^{N_{\beta }} k^{\beta }\left( \frac{\prod _{m=1}^{N_{\beta }} C_{66}^{m}}{C_{66}^{\beta }}\right) \right] } \end{array}\right. } \end{aligned}$$
(A13)

The strain components of each subcell can be expressed as:

$$\begin{aligned} {\left\{ \begin{array}{ll} \epsilon _{XX}^{\beta }=\epsilon _{XX}\\ \epsilon _{YY}^{\beta }=P_1\left( \frac{\prod _{m=1}^{N_{\beta }}C_{22}^{m}}{C_{22}^{\beta }}\right) \epsilon _{YY}+P_1\sum _{n=1}^{N_{\beta }}k^{n}\left[ \frac{\prod _{l=1}^{N_{\beta }}C_{22}^{l}}{C_{22}^{\beta }C_{22}^n}\right] \cdot \\ ~~~~\left[ \left( C_{21}^{\beta }-C_{21}^{m}\right) \epsilon _{XX}+\left( C_{23}^{\beta }-C_{13}^{m}\right) \epsilon _{ZZ}\right] \quad n=\beta , k^n=0\\ \epsilon _{ZZ}^{\beta }=\epsilon _{ZZ}\\ \gamma _{YZ}^{\beta }=P_2\left( \dfrac{\prod _{m=1}^{N_{\beta }}C_{44}^{m}}{C_{44}^{\beta }}\right) \gamma _{YZ}\\ \gamma _{XZ}^{\beta }=\gamma _{XZ}\\ \gamma _{XY}^{\beta }=P_3\left( \dfrac{\prod _{m=1}^{N_{\beta }}C_{66}^{m}}{C_{66}^{\beta }}\right) \gamma _{XY} \end{array}\right. } \end{aligned}$$
(A14)

1.3 3. SPM-Z model

The SPM-Z model is used to obtain the homogenized properties of \(N_{\gamma }\) subcells stacked in Z direction, as shown in Fig. 15c. The stress and strain components based on the series-parallel assumption can be expressed as:

$$\begin{aligned} \begin{array}{lll} \epsilon _{XX}^{\gamma }=\epsilon _{XX} &{}\quad \epsilon _{YY}^{\gamma }=\epsilon _{YY} &{}\quad \gamma _{XY}^{\gamma }=\gamma _{XY}\\ \sigma _{ZZ}^{\gamma }=\sigma _{ZZ} &{}\quad \tau _{XZ}^{\gamma }=\tau _{XZ} &{}\quad \tau _{YZ}^{\gamma }=\tau _{YZ} \quad \gamma =1,2\cdots N_{\gamma }\,\,\,\,\,\,\,\,\,\, \end{array}\nonumber \\ \end{aligned}$$
(A15)

which leads to the following equilibrium and compatibility conditions:

$$\begin{aligned} \begin{array}{lll} \sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }\sigma _{XX}^{\gamma }=\sigma _{XX}&{}\quad \sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }\sigma _{YY}^{\alpha }=\sigma _{YY}&{}\quad \sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }\tau _{XY}^{\gamma }=\tau _{XY}\\ \sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }\epsilon _{ZZ}^{\gamma }=\epsilon _{ZZ}&{}\quad \sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }\gamma _{XZ}^{\gamma }=\gamma _{XZ}&{}\quad \sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }\gamma _{YZ}^{\gamma }=\gamma _{YZ} \end{array}\nonumber \\ \end{aligned}$$
(A16)
Table 6 Fiber mechanical properties as input for calculation
Table 7 Matrix mechanical properties as input for calculation
Table 8 Strength of equivalent laminate elements for PWC

where \(k^{\gamma }\) denote the effective width ratios of each subcell. Solving these equations yields the formula for the effective stiffness matrix of the Z model:

$$\begin{aligned} {\left\{ \begin{array}{ll} C_{11}=\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{11}^{\gamma }+P_1\sum _{\gamma =1}^{N_{\gamma }-1}\sum _{m=2}^{N_{\gamma }}k^{\gamma }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\gamma }}C_{33}^{n}}{C_{33}^{\gamma }C_{33}^{m}}\right] \\ ~~~~\left( C_{13}^{\gamma }-C_{13}^{m}\right) \left( C_{31}^{m}-C_{31}^{\gamma }\right) \quad m\le \gamma , k^{\gamma }k^{m}=0 \\ C_{12}=\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{12}^{\gamma }+P_1\sum _{\gamma =1}^{N_{\gamma }-1}\sum _{m=2}^{N_{\gamma }}k^{\gamma }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\gamma }}C_{33}^{n}}{C_{33}^{\gamma }C_{33}^{m}}\right] \\ ~~~~\left( C_{13}^{\gamma }-C_{13}^{m}\right) \left( C_{32}^{m}-C_{32}^{\gamma }\right) \quad m\le \gamma , k^{\gamma }k^{m}=0\\ C_{13}=P_1\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{13}^{\gamma }\left( \dfrac{\prod _{m=1}^{N_{\gamma }}C_{33}^{m}}{C_{33}^{\gamma }}\right) \\ C_{21}=\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{21}^{\gamma }+P_1\sum _{\gamma =1}^{N_{\gamma }-1}\sum _{m=2}^{N_{\gamma }}k^{\gamma }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\gamma }}C_{33}^{n}}{C_{33}^{\gamma }C_{33}^{m}}\right] \\ ~~~~\left( C_{23}^{\gamma }-C_{23}^{m}\right) \left( C_{31}^{m}-C_{31}^{\gamma }\right) \quad m\le \gamma , k^{\gamma }k^{m}=0,\\ C_{22}=\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{22}^{\gamma }+P_1\sum _{\gamma =1}^{N_{\gamma }-1}\sum _{m=2}^{N_{\gamma }}k^{\gamma }k^{m}\left[ \dfrac{\prod _{n=1}^{N_{\gamma }}C_{33}^{n}}{C_{33}^{\gamma }C_{33}^{m}}\right] \\ ~~~~\left( C_{23}^{\gamma }-C_{23}^{m}\right) \left( C_{32}^{m}-C_{32}^{\gamma }\right) \quad m\le \gamma , k^{\gamma }k^{m}=0\\ C_{23}=P_1\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{23}^{\gamma }\left( \dfrac{\prod _{m=1}^{N_{\gamma }}C_{33}^{m}}{C_{33}^{\gamma }}\right) \\ C_{31}=P_1\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{31}^{\gamma }\left( \dfrac{\prod _{m=1}^{N_{\gamma }}C_{33}^{m}}{C_{33}^{\gamma }}\right) \\ C_{32}=P_1\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{32}^{\gamma }\left( \dfrac{\prod _{m=1}^{N_{\gamma }}C_{33}^{m}}{C_{33}^{\gamma }}\right) \\ C_{33}=P_1\prod _{\gamma =1}^{N_{\gamma }}C_{33}^{\gamma }\\ C_{44}=P_2\prod _{\gamma =1}^{N_{\gamma }}C_{44}^{\gamma }\\ C_{55}=P_3\prod _{\gamma =1}^{N_{\gamma }}C_{55}^{\gamma }\\ C_{66}=\sum _{\gamma =1}^{N_{\gamma }}k^{\gamma }C_{66}^{\gamma }\nonumber \end{array}\right. }\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ \end{aligned}$$
(A17)

where

$$\begin{aligned} {\left\{ \begin{array}{ll} P_{1}=\dfrac{1}{\left[ \sum _{\gamma =1}^{N_{\gamma }} k^{\gamma }\left( \frac{\prod _{m=1}^{N_{\gamma }} C_{33}^{m}}{C_{33}^{\gamma }}\right) \right] } \vspace{1mm}\\ P_{2}=\dfrac{1}{\left[ \sum _{\gamma =1}^{N_{\gamma }} k^{\gamma }\left( \frac{\prod _{m=1}^{N_{\gamma }} C_{44}^{m}}{ C_{44}^{\gamma }}\right) \right] } \vspace{1mm}\\ P_{3}=\dfrac{1}{\left[ \sum _{\gamma =1}^{N_{\gamma }} k^{\gamma }\left( \frac{\prod _{m=1}^{N_{\gamma }} C_{55}^{m}}{C_{55}^{\gamma }}\right) \right] } \end{array}\right. } \end{aligned}$$
(A18)

The strain components of each ELE can be expressed as:

$$\begin{aligned} {\left\{ \begin{array}{ll} \epsilon _{XX}^{\gamma }=\epsilon _{XX}\\ \epsilon _{YY}^{\gamma }=\epsilon _{YY}\\ \epsilon _{ZZ}^{\gamma }=P_1\left( \frac{\prod _{m=1}^{N_{\gamma }}C_{33}^{m}}{C_{33}^{\gamma }}\right) \epsilon _{ZZ}+P_1\sum _{n=1}^{N_{\gamma }}k^{n}\left[ \frac{\prod _{l=1}^{N_{\gamma }}C_{33}^{l}}{C_{33}^{\gamma }C_{33}^n}\right] \cdot \\ ~~~~\left[ \left( C_{31}^{n}-C_{31}^{\gamma }\right) \epsilon _{XX}+\left( C_{32}^{n}-C_{32}^{\gamma }\right) \epsilon _{YY}\right] \quad n=\gamma , k^n=0\\ \gamma _{YZ}^{\gamma }=P_2\left( \dfrac{\prod _{m=1}^{N_{\gamma }}C_{44}^{m}}{C_{44}^{\gamma }}\right) \gamma _{YZ}\\ \gamma _{XZ}^{\gamma }=P_3\left( \dfrac{\prod _{m=1}^{N_{\gamma }}C_{55}^{m}}{C_{55}^{\gamma }}\right) \gamma _{XZ}\\ \gamma _{XY}^{\gamma }=\gamma _{XY} \end{array}\right. } \end{aligned}$$
(A19)

Appendix C

The fiber and matrix properties used for the studied composites are listed in Tables 6 and 7. Tables 8, 9, 10 and 11 present the strength of equivalent laminate elements for PWC, TWC, WR-2.5DBC and 2DTBC, respectively.

Table 9 Strength of equivalent laminate elements for TWC
Table 10 Strength of equivalent laminate elements for WR-2.5DBC
Table 11 Strength of equivalent laminate elements for 2DTBC

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H., Liu, P., Zhang, Y. et al. Theoretical prediction for effective properties and progressive failure of textile composites: a generalized multi-scale approach. Acta Mech. Sin. 37, 1222–1244 (2021). https://doi.org/10.1007/s10409-021-01098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01098-8

Keywords

Navigation