Skip to main content
Log in

Review on fatigue life prediction models of welded joint

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Fatigue assessment of welded joint is still far from being completely solved now, since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably. Thus, such influencing factors of welded joint fatigue are firstly summarized in this work; and then, the existing life prediction models are reviewed from two aspects, i.e., uniaxial and multiaxial ones; finally, significant conclusions of existing experimental and theoretical researches and some suggestions on improving the fatigue assessment of welded joints, especially for the low-cycle fatigue with the occurrence of ratchetting, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fricke, W.: IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Tress Analysis: IIW-2006-09 (2012)

  2. Hobbacher, A.: Recommendations for Fatigue Design of Welded Joints and Components. Springer, Berlin (2015)

    Google Scholar 

  3. Niemi, E., Fricke, W., Maddox, S.J.: Fatigue Analysis of Welded Components: Designer’s Guide to the Structural Hot-Spot Stress Approach. Woodhead Publishing, Sawston (2006)

    Google Scholar 

  4. Casavola, C., Pappalettere, C.: Discussion on local approaches for the fatigue design of welded joints. Int. J. Fatigue 31, 41–49 (2009)

    Google Scholar 

  5. Fricke, W.: Recent developments and future challenges in fatigue strength assessment of welded joints. Proc. Inst. Mech. Eng. Part C 229, 1224–1239 (2015)

    Google Scholar 

  6. Fricke, W.: Fatigue analysis of welded joints: state of development. Mar. Struct. 16, 185–200 (2003)

    Google Scholar 

  7. Radaj, D.: Design and Analysis of Fatigue Resistant Welded Structures. Elsevier, Amsterdam (1990)

    Google Scholar 

  8. Radaj, D.: Review of fatigue strength assessment of nonwelded and welded structures based on local parameters. Int. J. Fatigue 18, 153–170 (1996)

    Google Scholar 

  9. Radaj, D., Sonsino, C.M., Fricke, W.: Fatigue Assessment of Welded Joints by Local Approaches. Woodhead Publishing, Sawston (2006)

    Google Scholar 

  10. Radaj, D., Sonsino, C.M., Fricke, W.: Recent developments in local concepts of fatigue assessment of welded joints. Int. J. Fatigue 31, 2–11 (2009)

    Google Scholar 

  11. Radaj, D.: State-of-the-art review on the local strain energy density concept and its relation to the J-integral and peak stress method. Fatigue Fract. Eng. Mater. Struct. 38, 2–28 (2015)

    Google Scholar 

  12. Taylor, D., Barrett, N., Lucano, G.: Some new methods for predicting fatigue in welded joints. Int. J. Fatigue 24, 509–518 (2002)

    Google Scholar 

  13. Maddox, S.: Review of fatigue assessment procedures for welded aluminium structures. Int. J. Fatigue 25, 1359–1378 (2003)

    Google Scholar 

  14. Hobbacher, A.: The new IIW recommendations for fatigue assessment of welded joints and components—a comprehensive code recently updated. Int. J. Fatigue 31, 50–58 (2009)

    Google Scholar 

  15. Susmel, L.: The theory of critical distances: a review of its applications in fatigue. Eng. Fract. Mech. 75, 1706–1724 (2008)

    Google Scholar 

  16. Berto, F., Lazzarin, P.: A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theor. Appl. Fract. Mech. 52, 183–194 (2009)

    Google Scholar 

  17. Fischer, C., Fricke, W., Rizzo, C.M.: Review of the fatigue strength of welded joints based on the notch stress intensity factor and SED approaches. Int. J. Fatigue 84, 59–66 (2016)

    Google Scholar 

  18. Baumgartner, J.: Review and considerations on the fatigue assessment of welded joints using reference radii. Int. J. Fatigue 101, 459–468 (2017)

    Google Scholar 

  19. Bäckström, M., Marquis, G.: A review of multiaxial fatigue of weldments: experimental results, design code and critical plane approaches. Fatigue Fract. Eng. Mater. Struct. 24, 279–291 (2001)

    Google Scholar 

  20. Sonsino, C.: Multiaxial fatigue assessment of welded joints—recommendations for design codes. Int. J. Fatigue 31, 173–187 (2009)

    Google Scholar 

  21. Pedersen, M.M.: Multiaxial fatigue assessment of welded joints using the notch stress approach. Int. J. Fatigue 83, 269–279 (2016)

    Google Scholar 

  22. Nykanen, T., Marquis, G., Bjork, T.: A simplified fatigue assessment method for high quality welded cruciform joints. Int. J. Fatigue 31, 79–87 (2009)

    Google Scholar 

  23. Benoit, A., Rémy, L., Köster, A., et al.: Experimental investigation of the behavior and the low cycle fatigue life of a welded structure. Mater. Sci. Eng. A 595, 64–76 (2014)

    Google Scholar 

  24. Teng, T.L., Fung, C.P., Chang, P.H.: Effect of weld geometry and residual stresses on fatigue in butt-welded joints. Int. J. Press. Vessels Piping 79, 467–482 (2002)

    Google Scholar 

  25. Lee, C.H., Chang, K.H., Jang, G.C., et al.: Effect of weld geometry on the fatigue life of non-load-carrying fillet welded cruciform joints. Eng. Fail. Anal. 16, 849–855 (2009)

    Google Scholar 

  26. Ye, N., Moan, T.: Improving fatigue life for aluminium cruciform joints by weld toe grinding. Fatigue Fract. Eng. Mater. Struct. 31, 152–163 (2008)

    Google Scholar 

  27. Shiozaki, T., Yamaguchi, N., Tamai, Y., et al.: Effect of weld toe geometry on fatigue life of lap fillet welded ultra-high strength steel joints. Int. J. Fatigue 116, 409–420 (2018)

    Google Scholar 

  28. Yıldırım, H.C.: Review of fatigue data for welds improved by tungsten inert gas dressing. Int. J. Fatigue 79, 36–45 (2015)

    Google Scholar 

  29. Qiao, J.N., Lu, J.X., Wu, S.K.: Fatigue cracking characteristics of fiber Laser-VPTIG hybrid butt welded 7N01P-T4 aluminum alloy. Int. J. Fatigue 98, 32–40 (2017)

    Google Scholar 

  30. Barsoum, Z., Barsoum, I.: Residual stress effects on fatigue life of welded structures using LEFM. Eng. Fail. Anal. 16, 449–467 (2009)

    Google Scholar 

  31. Do, V.N.V., Lee, C.H., Chang, K.H.: High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model. Int. J. Fatigue 70, 51–62 (2015)

    Google Scholar 

  32. Zhan, Z., Hu, W., Shen, F., et al.: Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elastic-plastic fatigue damage. Int. J. Fatigue 96, 208–223 (2017)

    Google Scholar 

  33. Wang, X., Meng, Q., Hu, W.: Fatigue life prediction for butt-welded joints considering weld-induced residual stresses and initial damage, relaxation of residual stress, and elasto-plastic fatigue damage. Fatigue Fract. Eng. Mater. Struct. 42, 1373–1386 (2019)

    Google Scholar 

  34. Liu, Z.C., Jiang, C., Li, B.C., et al.: A residual stress dependent multiaxial fatigue life model of welded structures. Fatigue Fract. Eng. Mater. Struct. 41, 300–313 (2018)

    Google Scholar 

  35. Harati, E., Karlsson, L., Svensson, L.E., et al.: The relative effects of residual stresses and weld toe geometry on fatigue life of weldments. Int. J. Fatigue 77, 160–165 (2015)

    Google Scholar 

  36. Cheng, X.: Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures. Int. J. Fatigue 25, 1259–1269 (2003)

    Google Scholar 

  37. Sidhom, N., Laamouri, A., Fathallah, R., et al.: Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach. Int. J. Fatigue 27, 729–745 (2005)

    Google Scholar 

  38. Pavan, M., Furfari, D., Ahmad, B., et al.: Fatigue crack growth in a laser shock peened residual stress field. Int. J. Fatigue 123, 157–167 (2019)

    Google Scholar 

  39. Yildirim, H.C., Marquis, G.B.: Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact. Int. J. Fatigue 44, 168–176 (2012)

    Google Scholar 

  40. Sonsino, C.M.: Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry. Int. J. Fatigue 31, 88–101 (2009)

    Google Scholar 

  41. Kang, H.T., Lee, Y.L., Sun, X.J.: Effects of residual stress and heat treatment on fatigue strength of weldments. Mater. Sci. Eng. A 497, 37–43 (2008)

    Google Scholar 

  42. Wang, D., Zhang, H., Gong, B., et al.: Residual stress effects on fatigue behaviour of welded T-joint: a finite fracture mechanics approach. Mater. Des. 91, 211–217 (2016)

    Google Scholar 

  43. Kainuma, S., Mori, T.: A study on fatigue crack initiation point of load-carrying fillet welded cruciform joints. Int. J. Fatigue 30, 1669–1677 (2008)

    Google Scholar 

  44. Gu, C., Lian, J., Bao, Y., et al.: Microstructure-based fatigue modelling with residual stresses: prediction of the microcrack initiation around inclusions. Mater. Sci. Eng. A 751, 133–141 (2019)

    Google Scholar 

  45. Cui, C., Zhang, Q., Bao, Y., et al.: Fatigue life evaluation of welded joints in steel bridge considering residual stress. J. Constr. Steel Res. 153, 509–518 (2019)

    Google Scholar 

  46. McClung, R.C.: A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract. Eng. Mater. Struct. 30, 173–205 (2007)

    Google Scholar 

  47. Xie, X., Jiang, W., Luo, Y., et al.: A model to predict the relaxation of weld residual stress by cyclic load: experimental and finite element modeling. Int. J. Fatigue 95, 293–301 (2017)

    Google Scholar 

  48. Liljedahl, C.D.M., Brouard, J., Zanellato, O., et al.: Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351. Int. J. Fatigue 31, 1081–1088 (2009)

    MATH  Google Scholar 

  49. Elber, W.: The significance of fatigue crack closure. In: Damage Tolerance in Aircraft Structures, ASTM STP 486. American Society for Testing and Materials, Philadelphia, pp 230–242 (1971)

  50. Servetti, G., Zhang, X.: Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Eng. Fract. Mech. 76, 1589–1602 (2009)

    Google Scholar 

  51. Ceschini, L., Boromei, I., Minak, G., et al.: Microstructure, tensile and fatigue properties of AA6061/20vol.%Al2O3p friction stir welded joints. Compos. A 38, 1200–1210 (2007)

    Google Scholar 

  52. Kchaou, Y., Haddar, N., Hénaff, G., et al.: Microstructural, compositional and mechanical investigation of Shielded Metal Arc Welding (SMAW) welded superaustenitic UNS N08028 (Alloy 28) stainless steel. Mater. Des. 63, 278–285 (2014)

    Google Scholar 

  53. Besel, Y., Besel, M., Alfaro Mercado, U., et al.: Influence of local fatigue damage evolution on crack initiation behavior in a friction stir welded Al–Mg–Sc alloy. Int. J. Fatigue 99, 151–162 (2017)

    Google Scholar 

  54. Cortés, R., Rodríguez, N.K., Ambriz, R.R., et al.: Fatigue and crack growth behavior of Inconel 718-AL6XN dissimilar welds. Mater. Sci. Eng. A 745, 20–30 (2019)

    Google Scholar 

  55. Velu, M., Bhat, S.: Experimental investigations of fracture and fatigue crack growth of copper-steel joints arc welded using nickel-base filler. Mater. Des. 67, 244–260 (2015)

    Google Scholar 

  56. Wang, X., Shao, C., Liu, X., et al.: Transition and fracture shift behavior in LCF test of dissimilar welded joint at elevated temperature. J. Mater. Sci. Technol. 34, 720–731 (2018)

    Google Scholar 

  57. Kermanidis, A.T., Tzamtzis, A.: An experimental approach for estimating the effect of heat affected zone (HAZ) microstructural gradient on fatigue crack growth rate in aluminum alloy FSW. Mater. Sci. Eng. A 691, 110–120 (2017)

    Google Scholar 

  58. Chen, R., Jiang, P., Shao, X., et al.: Analysis of crack tip transformation zone in austenitic stainless steel laser-MIG hybrid welded joint. Mater. Charact. 132, 260–268 (2017)

    Google Scholar 

  59. Liu, Z., Guo, X., Cui, H., et al.: Role of misorientation in fatigue crack growth behavior for NG-TIG welded joint of Ni-based alloy. Mater. Sci. Eng. A 710, 151–163 (2018)

    Google Scholar 

  60. Oh, J., Kim, N.J., Lee, S., et al.: Correlation of fatigue properties and microstructure in investment cast Ti-6Al-4V welds. Mater. Sci. Eng. A 340, 232–242 (2003)

    Google Scholar 

  61. Balasubramanian, T.S., Balasubramanian, V., Muthu Manickam, M.A.: Fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V alloy. Mater. Des. 32, 4509–4520 (2011)

    Google Scholar 

  62. Hu, Y.N., Wu, S.C., Song, Z., et al.: Effect of microstructural features on the failure behavior of hybrid laser welded AA7020. Fatigue Fract. Eng. Mater. Struct. 41, 2010–2023 (2018)

    Google Scholar 

  63. Yuan, H., Zhang, W., Castelluccio, G.M., et al.: Microstructure-sensitive estimation of small fatigue crack growth in bridge steel welds. Int. J. Fatigue 112, 183–197 (2018)

    Google Scholar 

  64. Suresh, S., Ritchie, R.O.: Propagation of short fatigue cracks. Int. Met. Rev. 29, 445–475 (1984)

    Google Scholar 

  65. Zerbst, U., Ainsworth, R.A., Beier, H.T., et al.: Review on fracture and crack propagation in weldments—a fracture mechanics perspective. Eng. Fract. Mech. 132, 200–276 (2014)

    Google Scholar 

  66. Shao, C., Cui, H., Lu, F., et al.: Quantitative relationship between weld defect characteristic and fatigue crack initiation life for high-cycle fatigue property. Int. J. Fatigue 123, 238–247 (2019)

    Google Scholar 

  67. Lin, S., Deng, Y.L., Tang, J.G., et al.: Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al–Mg–Si alloy. Mater. Sci. Eng., A 745, 63–73 (2019)

    Google Scholar 

  68. Ohta, A., Sasaki, E., Nihei, M., et al.: Fatigue crack propagation rates and threshold stress intensity factors for welded joints of HT80 steel at several stress ratios. Int. J. Fatigue 4, 233–237 (1982)

    Google Scholar 

  69. Nykänen, T., Björk, T.: Assessment of fatigue strength of steel butt-welded joints in as-welded condition—alternative approaches for curve fitting and mean stress effect analysis. Mar. Struct. 44, 288–310 (2015)

    Google Scholar 

  70. Karakas, Ö.: Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith–Watson–Topper and reference radius concepts. Int. J. Fatigue 49, 1–17 (2013)

    Google Scholar 

  71. Skriko, T., Ghafouri, M., Björk, T.: Fatigue strength of TIG-dressed ultra-high-strength steel fillet weld joints at high stress ratio. Int. J. Fatigue 94, 110–120 (2017)

    Google Scholar 

  72. Gaur, V., Enoki, M., Okada, T., et al.: A study on fatigue behavior of MIG-welded Al–Mg alloy with different filler-wire materials under mean stress. Int. J. Fatigue 107, 119–129 (2018)

    Google Scholar 

  73. Shao, C., Lu, F., Cui, H., et al.: Characterization of high-gradient welded microstructure and its failure mode in fatigue test. Int. J. Fatigue 113, 1–10 (2018)

    Google Scholar 

  74. Baumgartner, J.: Enhancement of the fatigue strength assessment of welded components by consideration of mean and residual stresses in the crack initiation and propagation phases. Weld. World 60, 547–558 (2016)

    Google Scholar 

  75. Mikkola, E., Murakami, Y., Marquis, G.: Equivalent crack approach for fatigue life assessment of welded joints. Eng. Fract. Mech. 149, 144–155 (2015)

    Google Scholar 

  76. Sonsino, C.M., Fricke, W., Bruyne, F.D., et al.: Notch stress concepts for the fatigue assessment of welded joints—background and applications. Int. J. Fatigue 34, 2–16 (2012)

    Google Scholar 

  77. Frank, D., Remes, H., Romanoff, J.: On the slope of the fatigue resistance curve for laser stake-welded T-joints. Fatigue Fract. Eng. Mater. Struct. 36, 1336–1351 (2013)

    Google Scholar 

  78. Wiebesiek, J., Störzel, K., Bruder, T., et al.: Multiaxial fatigue behaviour of laserbeam-welded thin steel and aluminium sheets under proportional and non-proportional combined loading. Int. J. Fatigue 33, 992–1005 (2011)

    Google Scholar 

  79. Sonsino, C.M.: Influence of material’s ductility and local deformation mode on multiaxial fatigue response. Int. J. Fatigue 33, 930–947 (2011)

    Google Scholar 

  80. Frendo, F., Bertini, L.: Fatigue resistance of pipe-to-plate welded joint under in-phase and out-of-phase combined bending and torsion. Int. J. Fatigue 79, 46–53 (2015)

    Google Scholar 

  81. Kueppers, M., Sonsino, C.M.: Critical plane approach for the assessment of the fatigue behaviour of welded aluminium under multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 26, 507–513 (2003)

    MATH  Google Scholar 

  82. Proton, V., Alexis, J., Andrieu, E., et al.: Characterisation and understanding of the corrosion behaviour of the nugget in a 2050 aluminium alloy Friction Stir Welding joint. Corros. Sci. 73, 130–142 (2013)

    Google Scholar 

  83. Price, J.W.H., Ziara-Paradowska, A., Joshi, S., et al.: Comparison of experimental and theoretical residual stresses in welds: the issue of gauge volume. Int. J. Mech. Sci. 50, 513–521 (2008)

    Google Scholar 

  84. Yang, S., Yang, H., Liu, G., et al.: Approach for fatigue damage assessment of welded structure considering coupling effect between stress and corrosion. Int. J. Fatigue 88, 88–95 (2016)

    Google Scholar 

  85. Mutombo, K., Toit, M.D.: Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy. Int. J. Fatigue 33, 1539–1547 (2011)

    Google Scholar 

  86. Tao, J., Hu, S., Ji, L.: Effect of trace solute hydrogen on the fatigue life of electron beam welded Ti-6Al-4V alloy joints. Mater. Sci. Eng. A 684, 542–551 (2017)

    Google Scholar 

  87. Mehmanparast, A., Brennan, F., Tavares, I.: Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results. Mater. Des. 114, 494–504 (2017)

    Google Scholar 

  88. Wang, L., Hui, L., Zhou, S., et al.: Effect of corrosive environment on fatigue property and crack propagation behavior of Al 2024 friction stir weld. Trans. Nonferrous Met. Soc. China 26, 2830–2837 (2016)

    Google Scholar 

  89. Fricke, W., Kahl, A.: Comparison of different structural stress approaches for fatigue assessment of welded ship structures. Mar. Struct. 18, 473–488 (2005)

    Google Scholar 

  90. Shen, W., Yan, R., Barltrop, N., et al.: A method of determining structural stress for fatigue strength evaluation of welded joints based on notch stress strength theory. Int. J. Fatigue 90, 87–98 (2016)

    Google Scholar 

  91. Dong, P.: A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int. J. Fatigue 23, 865–876 (2001)

    Google Scholar 

  92. Xiao, Z., Yamada, K.: A method of determining geometric stress for fatigue strength evaluation of steel welded joints. Int. J. Fatigue 26, 1277–1293 (2004)

    Google Scholar 

  93. Remes, H., Fricke, W.: Influencing factors on fatigue strength of welded thin plates based on structural stress assessment. Weld. World 58, 915–923 (2014)

    Google Scholar 

  94. Liu, G., Liu, Y., Huang, Y.: A novel structural stress approach for multiaxial fatigue strength assessment of welded joints. Int. J. Fatigue 63, 171–182 (2014)

    Google Scholar 

  95. Poutiainen, I., Marquis, G.: A fatigue assessment method based on weld stress. Int. J. Fatigue 28, 1037–1046 (2006)

    Google Scholar 

  96. Zhang, G.: Method of effective stress for fatigue: part I—a general theory. Int. J. Fatigue 37, 17–23 (2012)

    Google Scholar 

  97. Neuber, H.: Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Material, p. 292. Springer, Berlin (1958)

    Google Scholar 

  98. Peterson, R.: Notch sensitivity. In: Sines, G., Waisman, J.L. (eds.) Metal Fatigue, pp. 293–306. McGraw Hill, New York (1959)

    Google Scholar 

  99. Taylor, D.: The theory of critical distances. Eng. Fract. Mech. 75, 1696–1705 (2008)

    Google Scholar 

  100. Radaj, D., Lazzarin, P., Berto, F.: Generalised Neuber concept of fictitious notch rounding. Int. J. Fatigue 51, 105–115 (2013)

    Google Scholar 

  101. Zhang, G., Sonsino, C.M., Sundermeier, R.: Method of effective stress for fatigue: part II—applications to V-notches and seam welds. Int. J. Fatigue 37, 24–40 (2012)

    Google Scholar 

  102. Karakaş, Ö.: Application of Neuber’s effective stress method for the evaluation of the fatigue behaviour of magnesium welds. Int. J. Fatigue 101, 115–126 (2017)

    Google Scholar 

  103. Liinalampi, S., Remes, H., Lehto, P., et al.: Fatigue strength analysis of laser-hybrid welds in thin plate considering weld geometry in microscale. Int. J. Fatigue 87, 143–152 (2016)

    Google Scholar 

  104. Berto, F., Lazzarin, P., Radaj, D.: Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Eng. Fract. Mech. 76, 1151–1175 (2009)

    Google Scholar 

  105. Pedersen, M.M., Mouritsen, O.Ø., Hansen, M.R., et al.: Re-analysis of fatigue data for welded joints using the notch stress approach. Int. J. Fatigue 32, 1620–1626 (2010)

    Google Scholar 

  106. Tovo, R., Livieri, P.: An implicit gradient application to fatigue of sharp notches and weldments. Eng. Fract. Mech. 74, 515–526 (2007)

    Google Scholar 

  107. Cristofori, A., Livieri, P., Tovo, R.: An application of the implicit gradient method to welded structures under multiaxial fatigue loadings. Int. J. Fatigue 31, 12–19 (2009)

    Google Scholar 

  108. Taylor, D., Hoey, D.: High cycle fatigue of welded joints: the TCD experience. Int. J. Fatigue 31, 20–27 (2009)

    Google Scholar 

  109. Karakaş, Ö., Zhang, G., Sonsino, C.M.: Critical distance approach for the fatigue strength assessment of magnesium welded joints in contrast to Neuber’s effective stress method. Int. J. Fatigue 112, 21–35 (2018)

    Google Scholar 

  110. Santus, C., Taylor, D., Benedetti, M.: Determination of the fatigue critical distance according to the line and the point methods with rounded V-notched specimen. Int. J. Fatigue 106, 208–218 (2018)

    Google Scholar 

  111. Nisitani, H., Teranishi, T.: KI of a circumferential crack emanating from an ellipsoidal cavity obtained by the crack tip stress method in FEM. Eng. Fract. Mech. 71, 579–585 (2004)

    Google Scholar 

  112. Meneghetti, G., Lazzarin, P.: Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components. Fatigue Fract. Eng. Mater. Struct. 30, 95–106 (2007)

    Google Scholar 

  113. Meneghetti, G.: The peak stress method applied to fatigue assessments of steel and aluminium fillet-welded joints subjected to mode I loading. Fatigue Fract. Eng. Mater. Struct. 31, 346–369 (2008)

    Google Scholar 

  114. Meneghetti, G., Guzzella, C., Atzori, B.: The peak stress method combined with 3D finite element models for fatigue assessment of toe and root cracking in steel welded joints subjected to axial or bending loading. Fatigue Fract. Eng. Mater. Struct. 37, 722–739 (2014)

    Google Scholar 

  115. Meneghetti, G., Marchi, A.D., Campagnolo, A.: Assessment of root failures in tube-to-flange steel welded joints under torsional loading according to the Peak Stress Method. Theor. Appl. Fract. Mech. 83, 19–30 (2016)

    Google Scholar 

  116. Meneghetti, G., Campagnolo, A., Babini, V., et al.: Multiaxial fatigue assessment of welded steel details according to the peak stress method: industrial case studies. Int. J. Fatigue 125, 362–380 (2019)

    Google Scholar 

  117. Casavola, C., Nobile, R., Pappalettere, C.: A local strain method for the evaluation of welded joints fatigue resistance: the case of thin main-plates thickness. Fatigue Fract. Eng. Mater. Struct. 28, 759–767 (2005)

    Google Scholar 

  118. Dong, P., Pei, X., Xing, S., et al.: A structural strain method for low-cycle fatigue evaluation of welded components. Int. J. Press. Vessels Pip 119, 39–51 (2014)

    Google Scholar 

  119. Pei, X., Dong, P.: An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects. Fatigue Fract. Eng. Mater. Struct. 42, 239–255 (2018)

    Google Scholar 

  120. Pei, X., Dong, P., Xing, S.: A structural strain parameter for a unified treatment of fatigue behaviors of welded components. Int. J. Fatigue 124, 444–460 (2019)

    Google Scholar 

  121. Savaidis, G., Malikoutsakis, M.: Advanced notch strain based calculation of S–N curves for welded components. Int. J. Fatigue 83, 84–92 (2016)

    Google Scholar 

  122. Sołtysiak, R., Boroński, D.: Strain analysis at notch root in laser welded samples using material properties of individual weld zones. Int. J. Fatigue 74, 71–80 (2015)

    Google Scholar 

  123. Saiprasertkit, K., Hanji, T., Miki, C.: Fatigue strength assessment of load-carrying cruciform joints with material mismatching in low- and high-cycle fatigue regions based on the effective notch concept. Int. J. Fatigue 40, 120–128 (2012)

    Google Scholar 

  124. Lazzarin, P., Tovo, R.: A notch intensity factor approach to the stress analysis of welds. Fatigue Fract. Eng. Mater. Struct. 21, 1089–1103 (1998)

    Google Scholar 

  125. Atzori, B., Lazzarin, P., Meneghetti, G.: Fatigue strength assessment of welded joints: from the integration of Paris’ law to a synthesis based on the notch stress intensity factors of the uncracked geometries. Eng. Fract. Mech. 75, 364–378 (2008)

    Google Scholar 

  126. Atzori, B., Lazzarin, P., Tovo, R.: From a local stress approach to fracture mechanics: a comprehensive evaluation of the fatigue strength of welded joints. Fatigue Fract. Eng. Mater. Struct. 22, 369–381 (1999)

    Google Scholar 

  127. Lazzarin, P., Livieri, P.: Notch stress intensity factors and fatigue strength of aluminium and steel welded joints. Int. J. Fatigue 23, 225–232 (2001)

    Google Scholar 

  128. Radaj, D.: State-of-the-art review on extended stress intensity factor concepts. Fatigue Fract. Eng. Mater. Struct. 37, 1–28 (2014)

    Google Scholar 

  129. Livieri, P., Lazzarin, P.: Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int. J. Fract. 133, 247–276 (2005)

    Google Scholar 

  130. Atzori, B., Lazzarin, P., Tovo, R.: Stress field parameters to predict the fatigue strength of notched components. J. Strain Anal. Eng. Des. 34, 437–453 (1999)

    Google Scholar 

  131. Meneghetti, G., Guzzella, C.: The peak stress method to estimate the mode I notch stress intensity factor in welded joints using three-dimensional finite element models. Eng. Fract. Mech. 115, 154–171 (2014)

    Google Scholar 

  132. Lazzarin, P., Berto, F., Zappalorto, M.: Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: theoretical bases and applications. Int. J. Fatigue 32, 1559–1567 (2010)

    Google Scholar 

  133. Lepore, M., Solberg, K., Berto, F.: A comparison between numerical and approximate methods for rapid calculation of NSIFs. Theor. Appl. Fract. Mech. 101, 67–79 (2019)

    Google Scholar 

  134. Lazzarin, P., Lassen, T., Livieri, P.: A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry. Fatigue Fract. Eng. Mater. Struct. 26, 49–58 (2003)

    Google Scholar 

  135. Lazzarin, P., Zambardi, R.: A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 112, 275–298 (2001)

    Google Scholar 

  136. Lazzarin, P., Berto, F.: Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches. Int. J. Fract. 135, 161–185 (2005)

    MATH  Google Scholar 

  137. Lazzarin, P., Livieri, P., Berto, F., et al.: Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading. Eng. Fract. Mech. 75, 1875–1889 (2008)

    Google Scholar 

  138. Berto, F., Vinogradov, A., Filippi, S.: Application of the strain energy density approach in comparing different design solutions for improving the fatigue strength of load carrying shear welded joints. Int. J. Fatigue 101, 371–384 (2017)

    Google Scholar 

  139. Lazzarin, P., Berto, F., Gomez, F.J., et al.: Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints. Int. J. Fatigue 30, 1345–1357 (2008)

    Google Scholar 

  140. Meneghetti, G., Campagnolo, A., Berto, F., et al.: Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I + II) loading. Theor. Appl. Fract. Mech. 79, 113–124 (2015)

    Google Scholar 

  141. Song, W., Liu, X., Razavi, S.M.J.: Fatigue assessment of steel load-carrying cruciform welded joints by means of local approaches. Fatigue Fract. Eng. Mater. Struct. 41, 2598–2613 (2018)

    Google Scholar 

  142. Fischer, C., Fricke, W., Rizzo, C.M.: Experiences and recommendations for numerical analyses of notch stress intensity factor and averaged strain energy density. Eng. Fract. Mech. 165, 98–113 (2016)

    Google Scholar 

  143. Radaj, D., Berto, F., Lazzarin, P.: Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches. Eng. Fract. Mech. 76, 1109–1130 (2009)

    Google Scholar 

  144. Varvani-Farahani, A.: A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions. Int. J. Fatigue 22, 295–305 (2000)

    Google Scholar 

  145. Pakandam, F., Varvani-Farahani, A.: Fatigue damage assessment of various welded joints under uniaxial loading based on energy methods. Int. J. Fatigue 33, 519–528 (2011)

    Google Scholar 

  146. Song, W., Liu, X., Berto, F., et al.: Energy-based low cycle fatigue indicator prediction of non-load-carrying cruciform welded joints. Theor. Appl. Fract. Mech. 96, 247–261 (2018)

    Google Scholar 

  147. Feng, L., Qian, X.: A hot-spot energy indicator for welded plate connections under cyclic axial loading and bending. Eng. Struct. 147, 598–612 (2017)

    Google Scholar 

  148. Shen, F., Zhao, B., Li, L., et al.: Fatigue damage evolution and lifetime prediction of welded joints with the consideration of residual stresses and porosity. Int. J. Fatigue 103, 272–279 (2017)

    Google Scholar 

  149. Zhang, W., Jiang, W., Zhao, X., et al.: Fatigue life of a dissimilar welded joint considering the weld residual stress: experimental and finite element simulation. Int. J. Fatigue 109, 182–190 (2018)

    Google Scholar 

  150. Chaboche, J.L., Lesne, P.M.: A non-linear continuous fatigue damage model. Fatigue Fract. Eng. Mater. Struct. 11, 1–17 (1988)

    Google Scholar 

  151. Jie, Z., Li, Y., Wei, X., et al.: Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics. J. Constr. Steel Res. 148, 542–550 (2018)

    Google Scholar 

  152. Xiao, Y.C., Li, S., Gao, Z.: A continuum damage mechanics model for high cycle fatigue. Int. J. Fatigue 20, 503–508 (1998)

    Google Scholar 

  153. Kintzel, O., Khan, S., Mosler, J.: A novel isotropic quasi-brittle damage model applied to LCF analyses of Al2024. Int. J. Fatigue 32, 1948–1959 (2010)

    Google Scholar 

  154. Al-Mukhtar, A.M., Biermann, H., Hübner, P., et al.: Determination of some parameters for fatigue life in welded joints using fracture mechanics method. J. Mater. Eng. Perform. 19, 1225–1234 (2010)

    Google Scholar 

  155. Zerbst, U., Madia, M.: Fracture mechanics based assessment of the fatigue strength: approach for the determination of the initial crack size. Fatigue Fract. Eng. Mater. Struct. 38, 1066–1075 (2015)

    Google Scholar 

  156. Zong, L., Shi, G., Wang, Y.Q., et al.: Fatigue assessment on butt welded splices in plates of different thicknesses. J. Constr. Steel Res. 129, 93–100 (2017)

    Google Scholar 

  157. Hoh, H.J., Pang, J.H.L., Tsang, K.S.: Stress intensity factors for fatigue analysis of weld toe cracks in a girth-welded pipe. Int. J. Fatigue 87, 279–287 (2016)

    Google Scholar 

  158. Zong, L., Shi, G., Wang, Y.Q., et al.: Investigation on fatigue behaviour of load-carrying fillet welded joints based on mix-mode crack propagation analysis. Arch. Civil Mech. Eng. 17, 677–686 (2017)

    Google Scholar 

  159. Gadallah, R., Osawa, N., Tanaka, S., et al.: A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method. Eng. Fract. Mech. 197, 48–65 (2018)

    Google Scholar 

  160. Carpinteri, A.: Fatigue growth of a surface crack in a welded T-joint. Int. J. Fatigue 27, 59–69 (2005)

    Google Scholar 

  161. Pang, J.H.L., Hoh, H.J., Tsang, K.S., et al.: Fatigue crack propagation analysis for multiple weld toe cracks in cut-out fatigue test specimens from a girth welded pipe. Int. J. Fatigue 94, 158–165 (2017)

    Google Scholar 

  162. Lados, D., Apelian, D., Donald, J.: Fracture mechanics analysis for residual stress and crack closure corrections. Int. J. Fatigue 29, 687–694 (2007)

    MATH  Google Scholar 

  163. Choi, D.H., Choi, H.Y.: Fatigue life prediction of out-of-plane gusset welded joints using strain energy density factor approach. Theor. Appl. Fract. Mech. 44, 17–27 (2005)

    Google Scholar 

  164. Remes, H.: Strain-based approach to fatigue crack initiation and propagation in welded steel joints with arbitrary notch shape. Int. J. Fatigue 52, 114–123 (2013)

    Google Scholar 

  165. Sun, G., Wang, C., Wei, X., et al.: Study on small fatigue crack initiation and growth for friction stir welded joints. Mater. Sci. Eng. A 739, 71–85 (2019)

    Google Scholar 

  166. Mikulski, Z., Lassen, T.: Fatigue crack initiation and subsequent crack growth in fillet welded steel joints. Int. J. Fatigue 120, 303–318 (2019)

    Google Scholar 

  167. Shiraiwa, T., Briffod, F., Enoki, M.: Development of integrated framework for fatigue life prediction in welded structures. Eng. Fract. Mech. 198, 158–170 (2018)

    Google Scholar 

  168. Lassen, T., Recho, N.: Proposal for a more accurate physically based S–N curve for welded steel joints. Int. J. Fatigue 31, 70–78 (2009)

    Google Scholar 

  169. Josefson, B.L., Ringsberg, J.W.: Assessment of uncertainties in life prediction of fatigue crack initiation and propagation in welded rails. Int. J. Fatigue 31, 1413–1421 (2009)

    Google Scholar 

  170. Zhang, Y.H., Maddox, S.J.: Fatigue life prediction for toe ground welded joints. Int. J. Fatigue 31, 1124–1136 (2009)

    Google Scholar 

  171. da Silva, A.L.L., Correia, J.A.F.O., de Jesus, A.M.P., et al.: Influence of fillet end geometry on fatigue behaviour of welded joints. Int. J. Fatigue 123, 196–212 (2019)

    Google Scholar 

  172. Al Zamzami, I., Susmel, L.: On the accuracy of nominal, structural, and local stress based approaches in designing aluminium welded joints against fatigue. Int. J. Fatigue 101, 137–158 (2017)

    Google Scholar 

  173. Khurshid, M., Barsoum, Z., Däuwel, T., et al.: Root fatigue strength assessment of fillet welded tube-to-plate joints subjected to multi-axial stress state using stress based local methods. Int. J. Fatigue 101, 209–223 (2017)

    Google Scholar 

  174. Bäckström, M., Marquis, G.: Interaction equations for multiaxial fatigue assessment of welded structures. Fatigue Fract. Eng. Mater. Struct. 27, 991–1003 (2004)

    Google Scholar 

  175. Sonsino, C.M.: Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses. Int. J. Fatigue 17, 55–70 (1995)

    Google Scholar 

  176. Sonsino, C., Kueppers, M., Eibl, M., et al.: Fatigue strength of laser beam welded thin steel structures under multiaxial loading. Int. J. Fatigue 28, 657–662 (2006)

    MATH  Google Scholar 

  177. Fatemi, A., Shamsaei, N.: Multiaxial fatigue: an overview and some approximation models for life estimation. Int. J. Fatigue 33, 948–958 (2011)

    Google Scholar 

  178. Karolczuk, A., Macha, E.: A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int. J. Fract. 134, 267–304 (2005)

    MATH  Google Scholar 

  179. Findley, W.N.: A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J. Eng. Ind. 81, 301–305 (1959)

    Google Scholar 

  180. Jen, Y.M., Chang, L.Y., Fang, C.F.: Assessing the fatigue life of butt-welded joints under oblique loading by using local approaches. Int. J. Fatigue 30, 603–613 (2008)

    Google Scholar 

  181. Marquis, G., Bäckström, M., Siljander, A.: Multiaxial fatigue damage parameters for welded joints: design code and critical plane approaches. In: Proc. First North European Engineering and Science Conference (1997)

  182. Lopez-Jauregi, A., Esnaola, J.A., Ulacia, I., et al.: Fatigue analysis of multipass welded joints considering residual stresses. Int. J. Fatigue 79, 75–85 (2015)

    Google Scholar 

  183. Bolchoun, A., Wiebesiek, J., Kaufmann, H., et al.: Application of stress-based multiaxial fatigue criteria for laserbeam-welded thin aluminium joints under proportional and non-proportional variable amplitude loadings. Theor. Appl. Fract. Mech. 73, 9–16 (2014)

    Google Scholar 

  184. Shen, W., Xu, L., He, F., et al.: Notch stress to assess multiaxial fatigue of complex welded structures under non-proportional loading. Theor. Appl. Fract. Mech. 102, 151–161 (2019)

    Google Scholar 

  185. Carpinteri, A., Spagnoli, A., Vantadori, S.: Multiaxial fatigue life estimation in welded joints using the critical plane approach. Int. J. Fatigue 31, 188–196 (2009)

    MATH  Google Scholar 

  186. Papadopoulos, I.V., Davoli, P., Gorla, C., et al.: A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19, 219–235 (1997)

    Google Scholar 

  187. Jiang, C., Liu, Z.C., Wang, X.G., et al.: A structural stress-based critical plane method for multiaxial fatigue life estimation in welded joints. Fatigue Fract. Eng. Mater. Struct. 39, 372–383 (2016)

    Google Scholar 

  188. Carpinteri, A., Boaretto, J., Fortese, G., et al.: Fatigue life estimation of fillet-welded tubular T-joints subjected to multiaxial loading. Int. J. Fatigue 101, 263–270 (2017)

    Google Scholar 

  189. Susmel, L.: A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems. Int. J. Fatigue 32, 1875–1883 (2010)

    Google Scholar 

  190. Araújo, J.A., Dantas, A.P., Castro, F.C., et al.: On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue. Int. J. Fatigue 33, 1092–1100 (2011)

    Google Scholar 

  191. Mamiya, E.N., Araújo, J.A., Castro, F.C.: Prismatic hull: a new measure of shear stress amplitude in multiaxial high cycle fatigue. Int. J. Fatigue 31, 1144–1153 (2009)

    MATH  Google Scholar 

  192. Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11, 149–165 (1988)

    Google Scholar 

  193. Hemmesi, K., Farajian, M., Fatemi, A.: Application of the critical plane approach to the torsional fatigue assessment of welds considering the effect of residual stresses. Int. J. Fatigue 101, 271–281 (2017)

    Google Scholar 

  194. Rettenmeier, P., Roos, E., Weihe, S.: Fatigue analysis of multiaxially loaded crane runway structures including welding residual stress effects. Int. J. Fatigue 82, 179–187 (2016)

    Google Scholar 

  195. Susmel, L., Lazzarin, P.: A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment. Fatigue Fract. Eng. Mater. Struct. 25, 63–78 (2002)

    Google Scholar 

  196. Susmel, L., Tovo, R.: On the use of nominal stresses to predict the fatigue strength of welded joints under biaxial cyclic loading. Fatigue Fract. Eng. Mater. Struct. 27, 1005–1024 (2004)

    Google Scholar 

  197. Susmel, L., Tovo, R.: Local and structural multiaxial stress states in welded joints under fatigue loading. Int. J. Fatigue 28, 564–575 (2006)

    MATH  Google Scholar 

  198. Susmel, L., Sonsino, C.M., Tovo, R.: Accuracy of the modified Wöhler Curve Method applied along with the rref = 1 mm concept in estimating lifetime of welded joints subjected to multiaxial fatigue loading. Int. J. Fatigue 33, 1075–1091 (2011)

    Google Scholar 

  199. Susmel, L., Taylor, D.: The modified Wöhler curve method applied along with the theory of critical distances to estimate finite life of notched components subjected to complex multiaxial loading paths. Fatigue Fract. Eng. Mater. Struct. 31, 1047–1064 (2008)

    Google Scholar 

  200. Susmel, L., Hattingh, D.G., James, M.N., et al.: Multiaxial fatigue assessment of friction stir welded tubular joints of Al 6082-T6. Int. J. Fatigue 101, 282–296 (2017)

    Google Scholar 

  201. Al Zamzami, I., Susmel, L.: On the use of hot-spot stresses, effective notch stresses and the point method to estimate lifetime of inclined welds subjected to uniaxial fatigue loading. Int. J. Fatigue 117, 432–449 (2018)

    Google Scholar 

  202. Wei, Z., Dong, P.: Multiaxial fatigue life assessment of welded structures. Eng. Fract. Mech. 77, 3011–3021 (2010)

    Google Scholar 

  203. Mei, J., Dong, P.: An equivalent stress parameter for multi-axial fatigue evaluation of welded components including non-proportional loading effects. Int. J. Fatigue 101, 297–311 (2017)

    Google Scholar 

  204. Van Dang, K., Bignonnet, A., Fayard, J., et al.: Assessment of welded structures by a local multiaxial fatigue approach. Fatigue Fract. Eng. Mater. Struct. 24, 369–376 (2001)

    Google Scholar 

  205. Lazzarin, P., Sonsino, C.M., Zambardi, R.: A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings. Fatigue Fract. Eng. Mater. Struct. 27, 127–140 (2004)

    Google Scholar 

  206. Liu, B., Yan, X.: An extension research on the theory of critical distances for multiaxial notch fatigue finite life prediction. Int. J. Fatigue 117, 217–229 (2018)

    Google Scholar 

  207. Meneghetti, G., Campagnolo, A., Rigon, D.: Multiaxial fatigue strength assessment of welded joints using the Peak Stress Method—part I: approach and application to aluminium joints. Int. J. Fatigue 101, 328–342 (2017)

    Google Scholar 

  208. Meneghetti, G., Campagnolo, A., Rigon, D.: Multiaxial fatigue strength assessment of welded joints using the Peak Stress Method—part II: application to structural steel joints. Int. J. Fatigue 101, 343–362 (2017)

    Google Scholar 

  209. Koster, M., Lis, A., Lee, W.J., et al.: Influence of elastic–plastic base material properties on the fatigue and cyclic deformation behavior of brazed steel joints. Int. J. Fatigue 82, 49–59 (2016)

    Google Scholar 

  210. Zeng, Z., Oliveira, J.P., Yang, M., et al.: Functional fatigue behavior of NiTi-Cu dissimilar laser welds. Mater. Des. 114, 282–287 (2017)

    Google Scholar 

  211. Koster, M., Kenel, C., Stutz, A., et al.: Fatigue and cyclic deformation behavior of brazed steel joints. Mater. Sci. Eng. A 581, 90–97 (2013)

    Google Scholar 

  212. Li, M., Barrett, R.A., Scully, S., et al.: Cyclic plasticity of welded P91 material for simple and complex power plant connections. Int. J. Fatigue 87, 391–404 (2016)

    Google Scholar 

  213. Guo, S.J., Wang, R.Z., Chen, H., et al.: A comparative study on the cyclic plasticity and fatigue failure behavior of different subzones in CrNiMoV steel welded joint. Int. J. Mech. Sci. 150, 66–78 (2019)

    Google Scholar 

  214. Wang, H., Jing, H., Zhao, L., et al.: Uniaxial ratcheting behaviour of 304L stainless steel and ER308L weld joints. Mater. Sci. Eng. A 708, 21–42 (2017)

    Google Scholar 

  215. Wang, H., Jing, H., Zhao, L., et al.: Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation. Mater. Sci. Eng. A 690, 16–31 (2017)

    Google Scholar 

  216. Tang, J., Zhang, Z., Lu, H., et al.: Ratcheting behavior of weld joints under uniaxial cyclic loading using miniature specimen. Trans. Tianjin Univ. 25, 85–94 (2019)

    Google Scholar 

  217. Luo, H., Kang, G., Kan, Q., et al.: Experimental investigation on the heterogeneous ratchetting of SUS301L stainless steel butt weld joint during uniaxial cyclic loading. Int. J. Fatigue 105, 169–179 (2017)

    Google Scholar 

  218. Besel, Y., Besel, M., Dietrich, E., et al.: Heterogeneous local straining behavior under monotonic and cyclic loadings in a friction stir welded aluminum alloy. Int. J. Fatigue 125, 138–148 (2019)

    Google Scholar 

  219. Kang, G., Liu, Y., Li, Z.: Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing. Mater. Sci. Eng. A 435–436, 396–404 (2006)

    Google Scholar 

  220. He, C., Huang, C., Liu, Y., et al.: Effects of mechanical heterogeneity on the tensile and fatigue behaviours in a laser-arc hybrid welded aluminium alloy joint. Mater. Des. 65, 289–296 (2015)

    Google Scholar 

  221. Luo, H., Kang, G., Kan, Q., et al.: Experimental study on the whole-life heterogeneous ratchetting and ratchetting-fatigue interaction of SUS301L stainless steel butt-welded joint. Fatigue Fract. Eng. Mater. Struct. 43, 36–50 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11532010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, G., Luo, H. Review on fatigue life prediction models of welded joint. Acta Mech. Sin. 36, 701–726 (2020). https://doi.org/10.1007/s10409-020-00957-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00957-0

Keywords

Navigation