Skip to main content
Log in

Multi-scale fatigue damage model for steel structures working under high temperature

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ASCE: Committee on fatigue and fracture reliability of the committee on structural safety and reliability of the structural division, fatigue reliability l–4. J. Struct. Eng. ASCE 108, 3–88 (1982)

    Google Scholar 

  2. Yue, Q.R., Zheng, Y., Chen, X., et al.: Research on fatigue performance of CFRP reinforced steel crane girder. Compos. Struct. 154, 277–285 (2016)

    Article  Google Scholar 

  3. Tong, X.L., Tuan, C.Y., Zhang, J.Q., et al.: Fatigue strength of end-coped crane runway girders. J. Struct. Eng. ASCE 133, 1783–1791 (2007)

    Article  Google Scholar 

  4. Tominaga, T., Matsuoka, K., Sato, Y., et al.: Fatigue improvement of weld repaired crane runway girder by ultrasonic impact treatment. Weld World 52, 50–62 (2008)

    Article  Google Scholar 

  5. Rios, E.R., Mohamed, H.J., Miller, K.J.: A micro-mechanics analysis for short fatigue crack growth. Fatigue Fract. Eng. Mater. 8, 49–63 (2010)

    Article  Google Scholar 

  6. Sun, C.Q., Liu, X.L., Hong, Y.S.: A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime. Acta. Mech. Sin. 31, 383–391 (2015)

    Article  Google Scholar 

  7. Alfredsson, B., Oberg, M., Lai, J.: Propagation of physically short cracks in a bainitic high strength bearing steel due to fatigue load. Int. J. Fatigue 90, 166–180 (2016)

    Article  Google Scholar 

  8. Zhao, X.F., Shang, D.G., Sun, Y.J., et al.: Multiaxial fatigue life prediction based on short crack propagation model with equivalent strain parameter. J. Mater. Eng. Perform. 27, 324–332 (2018)

    Article  Google Scholar 

  9. Yu, C., Kang, G.Z., Kan, Q.H.: A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy. Acta. Mech. Sin. 33, 619–634 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, Y.L., Wang, H.Y., Xia, M.F., et al.: Trans-scale mechanics: Looking for the missing links between continuum and micro/nanoscopic reality. Acta. Mech. Sin. 24, 111–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lukasz, P., Dariusz, S.: A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions. Acta. Mech. Sin. 32, 696–709 (2016)

    Article  MATH  Google Scholar 

  12. Roychowdhury, S., Seifert, H.P., Spätig, P., et al.: Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel. J. Nucl. Mater. 478, 343–364 (2016)

    Article  Google Scholar 

  13. Hou, N.X., Wen, Z.X., Yue, Z.F.: Tensile and fatigue behavior of thin-walled cylindrical specimens under temperature gradient condition. J. Mater. Sci. 43, 1933–1938 (2008)

    Article  Google Scholar 

  14. Wang, R.Z., Bo, C., Zhang, X.C., et al.: The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behavior in a forged and precipitation hardened nickel-based superalloy. Int. J. Fatigue 97, 190–201 (2017)

    Article  Google Scholar 

  15. Xu, L.Y., Zhao, L., Gao, Z.F., et al.: A novel creep-fatigue interaction damage model with the stress effect to simulate the creep-fatigue crack growth behavior. Int. J. Mech. Sci. 130, 143–153 (2017)

    Article  Google Scholar 

  16. Kuwamura, H., Hanzawa, M.: Inspection and repair of fatigue cracks in crane runway girders. J. Struct. Eng. 113, 2181–2194 (1988)

    Article  Google Scholar 

  17. Ávila, G., Palma, E., De, P.R.: Crane girder fatigue life determination using SN and LEFM methods. Eng. Fail. Anal. 79, 812–819 (2017)

    Article  Google Scholar 

  18. Kachanov, L.M.: On the time to failure under creep condition. Izv. Akad. Nauk. USSR. Otd. Tekhn. Nauk. 8, 26–31 (1958)

    Google Scholar 

  19. Rabotnov, Y.N.: On the equations of state for creep. McMillan, New York (1963)

    Google Scholar 

  20. Janson, J., Hultin, J.: Fracture mechanics and damage mechanics, a combined approach. J Méca. Appl. 1, 69–84 (1977)

    Google Scholar 

  21. Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  22. Tokaji, K., Takafuji, S., Ohya, K., et al.: Fatigue behavior of beta Ti-22V-4Al alloy subjected to surface-microstructural modification. J. Mater. Sci. 38, 1153–1159 (2003)

    Article  Google Scholar 

  23. Miller, K.J.: The behavior of short fatigue crack and their initiation part II—a general summary. Fatigue Fract. Eng. Mater. 10, 93–113 (1987)

    Article  Google Scholar 

  24. Meyer, S., Diegele, E., Brückner-Foit, A., et al.: Crack interaction modelling. Fatigue Fract. Eng. Mater. 23, 315–323 (2010)

    Article  Google Scholar 

  25. Hong, Y.S., Gu, Z.Y., Fang, B., et al.: Collective evolution characteristics and computer simulation of short fatigue cracks. Philos. Mag. A 75, 1517–1531 (1997)

    Article  Google Scholar 

  26. Bennetta, V.P., McDowell, D.L.: Polycrystal orientation distribution effects on microslip in high cycle fatigue. Int. J. Fatigue 25, 27–39 (2003)

    Article  MATH  Google Scholar 

  27. Craig, P.P., David, L.M.: Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100. Int. J. Plast. 26, 372–394 (2010)

    Article  MATH  Google Scholar 

  28. Skelton, R.P., Gandy, D.: Creep-fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms. Mater. High Temp. 25, 27–54 (2008)

    Article  Google Scholar 

  29. Sun, B., Xu, Y.L., Li, Z.X.: Multi-scale fatigue model and image-based simulation of collective short cracks evolution process. Comput. Mater. Sci. 117, 24–32 (2016)

    Article  Google Scholar 

  30. Angelova, D., Akid, R.: A note on modelling short fatigue crack behavior. Fatigue Fract. Eng. Mater. Struct. 21, 771–779 (1998)

    Article  Google Scholar 

  31. Bai, Y.L., Ke, F.J., Xia, M.F.: Formulation of statistic evolution of microcracks in solids. Acta. Mech. Sin. 7, 59–66 (1991)

    Article  MATH  Google Scholar 

  32. Sun, B., Xu, Y.L., Li, Z.X.: Multi-scale model for linking collective behavior of short and long cracks to continuous average fatigue damage. Eng. Fract. Mech. 157, 141–153 (2016)

    Article  Google Scholar 

  33. Huang, A.Y., Hu, K.X., Chandra, A.: A generalized self-consistent mechanics method for microcracked solids. J. Mech. Phys. of Solids 42, 1273–1291 (1994)

    Article  MATH  Google Scholar 

  34. Josef, B.: Creep Mechanics. Springer, Berlin (2005)

    Google Scholar 

  35. Norton, F.H.: The Creep of Steel at High Temperatures. Mcgraw-Hill, London (1929)

    Google Scholar 

  36. Sun, B., Yang, L., Guo, Y.: A high-cycle fatigue accumulation model based on electrical resistance for structural steels. Fatigue Fract. Eng. Mater. 30, 1052–1062 (2007)

    Article  Google Scholar 

  37. Wang, W.Y., Yan, S.H., Zhang, L.B., et al.: Creep test on Q345 steel at elevated temperature and fire resistance of steel columns considering creep. J. Build. Struct. 37, 47–54 (2016)

    Google Scholar 

  38. Bråthe, L.: Estimation of Kachanov parameters and extrapolation from isothermal creep rupture data. Int. J. Mech. Sci. 20, 617–624 (1978)

    Article  Google Scholar 

  39. Stewart, C.M., Gordon, A.P.: Strain and damage-based analytical methods to determine the Kachanov-Rabotnov tertiary creep-damage constants. Int. J. Damage Mech 21, 1186–1201 (2012)

    Article  Google Scholar 

  40. Shang, D.G., Yao, W.X.: A nonlinear damage cumulative model for uniaxial fatigue. Int. J. Fatigue 21, 187–194 (1999)

    Article  Google Scholar 

  41. Rettenmeier, P., Roos, E., Weihe, S.: Fatigue analysis of multiaxially loaded crane runway structures including welding residual stress effects. Int. J. Fatigue 82, 179–187 (2016)

    Article  Google Scholar 

  42. Wardenier, J., De Vries, P., Timmermann, G.: Evaluation of cracks in an offshore crane runway girder. Steel Const. 10, 67–71 (2017)

    Article  Google Scholar 

  43. Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. Trans. ASME 67, A159–A164 (1945)

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Program on Key Research Project (Grant 2016YFC0701301-02) and Jiangsu Province Natural Sciences Fund Subsidization Project (Grant BK20170655), to which the authors are most grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Sun, B. & Li, Z. Multi-scale fatigue damage model for steel structures working under high temperature. Acta Mech. Sin. 35, 615–623 (2019). https://doi.org/10.1007/s10409-018-00834-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-00834-x

Keywords

Navigation