Skip to main content
Log in

On-chip flow rate sensing via membrane deformation and bistability probed by microwave resonators

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Precise monitoring of fluid flow rates constitutes an integral problem in various lab-on-a-chip applications. While off-chip flow sensors are commonly used, new sensing mechanisms are being investigated to address the needs of increasingly complex lab-on-a-chip platforms which require local and non-intrusive flow rate sensing. In this regard, the deformability of microfluidic components has recently attracted attention as an on-chip sensing mechanism. To develop an on-chip flow rate sensor, here we utilized the mechanical deformations of a 220 nm thick Silicon Nitride membrane integrated with the microfluidic channel. Applied pressure and fluid flow induce different modes of deformations on the membrane, which are electronically probed by an integrated microwave resonator. The flow changes the capacitance, and in turn resonance frequency, of the microwave resonator. By tracking the resonance frequency, liquid flow was probed with the device. In addition to responding to applied pressure by deflection, the membrane also exhibits periodic pulsation motion under fluid flow at a constant rate. The two separate mechanisms, deflection and pulsation, constitute sensing mechanisms for pressure and flow rate. Using the same device architecture, we also detected pressure-induced deformations by a gas to draw further insight into the sensing mechanism of the membrane. Flow rate measurements based on the deformation and instability of thin membranes demonstrate the transduction potential of microwave resonators for fluid–structure interactions at micro- and nanoscales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Afshar S, Salimi E, Braasch K, Butler M, Thomson DJ, Bridges GE (2016) Multi-frequency DEP cytometer employing a microwave sensor for dielectric analysis of single cells. IEEE Trans Microwave Theory Techn 64(3):991–998

    Google Scholar 

  • Alhmoud H, Alkhaled M, Kaynak BE, Hanay MS (2023) Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. Lab Chip 7:94

    Google Scholar 

  • Attia R, Pregibon DC, Doyle PS, Viovy J-L, Bartolo D (2009) Soft microflow sensors. Lab Chip 9(9):1213–1218

    Article  Google Scholar 

  • Baldwin A, Yu L, Meng E (2016) An electrochemical impedance-based thermal flow sensor for physiological fluids. J Microelectromech Syst 25(6):1015–1024

    Article  Google Scholar 

  • Battat S, Weitz DA, Whitesides GM (2022) Nonlinear phenomena in microfluidics. Chem Rev 122(7):6921–6937

    Article  Google Scholar 

  • Campagnolo L, Nikolić M, Perchoux J, Lim YL, Bertling K, Loubiere K, Prat L, Rakić AD, Bosch T (2013) Flow profile measurement in microchannel using the optical feedback interferometry sensing technique. Microfluid Nanofluid 14(1–2):113–119

    Article  Google Scholar 

  • Cavaniol C, Cesar W, Descroix S, Viovy J-L (2022) Flowmetering for microfluidics. Lab Chip 22(19):3603–3617

    Article  Google Scholar 

  • Cetin AE, Stevens MM, Calistri NL, Fulciniti M, Olcum S, Kimmerling RJ, Munshi NC, Manalis SR (2017) Determining therapeutic susceptibility in multiple myeloma by single-cell mass accumulation. Nat Commun 8(1):1613

    Article  Google Scholar 

  • Chen Z, Guo Z, Mu X, Li Q, Wu X, Fu H (2019) Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect. Opt Exp 27(25):36932–36940

    Article  Google Scholar 

  • Cheri MS, Latifi H, Sadeghi J, Moghaddam MS, Shahraki H, Hajghassem H (2014) Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor. Analyst 139(2):431–438

    Article  Google Scholar 

  • Christ KV, Turner KT (2010) Methods to measure the strength of cell adhesion to substrates. J Adhes Sci Technol 24(13–14):2027–2058

    Article  Google Scholar 

  • Czarske J, Büttner L, Razik T, Müller H (2002) Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution. Measure Sci Technol 13(12):1979

    Article  Google Scholar 

  • Dijkstra M, de Boer MJ, Berenschot JW, Lammerink TSJ, Wiegerink RJ, Elwenspoek M (2007) Miniaturized flow sensor with planar integrated sensor structures on semicircular surface channels. In: 2007 IEEE 20th international conference on micro electro mechanical systems (MEMS). IEEE, pp 123–126

  • Ducloux O, Talbi A, Gimeno L, Viard R, Pernod P, Preobrazhensky V, Merlen A (2007) Self-oscillation mode due to fluid-structure interaction in a micromechanical valve. Appl Phys Lett 91(3):034101

    Article  Google Scholar 

  • Ejeian F, Azadi S, Razmjou A, Orooji Y, Kottapalli A, Warkiani ME, Asadnia M (2019) Design and applications of MEMS flow sensors: a review. Sens Actu A Phys 295:483–502

    Article  Google Scholar 

  • Enoksson P, Stemme G, Stemme E (1997) A silicon resonant sensor structure for Coriolis mass-flow measurements. J Microelectromech Syst 6(2):119–125

    Article  Google Scholar 

  • Ferrier GA, Romanuik SF, Thomson DJ, Bridges GE, Freeman MR (2009) A microwave interferometric system for simultaneous actuation and detection of single biological cells. Lab Chip 9(23):3406–3412

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446

    Article  Google Scholar 

  • Gass V, van der Schoot BH, de Rooij NF (1993) Nanofluid handling by micro-flow-sensor based on drag force measurements. In: Proceedings IEEE micro electro mechanical systems. IEEE, Fort Lauderdale, FL, USA, pp 167–172. https://doi.org/10.1109/MEMSYS.1993.296928

  • Gervais T, El-Ali J, Günther A, Jensen KF (2006) Flow-induced deformation of shallow microfluidic channels. Lab Chip 6(4):500–507

    Article  Google Scholar 

  • Glawdel T, Elbuken C, Ren CL (2012) Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys Rev E 85(1):016322

    Article  Google Scholar 

  • Haneveld J, Lammerink TS, de Boer MJ, Sanders RG, Mehendale A, Lötters JC, Dijkstra M, Wiegerink RJ (2010) Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor. J Micromech Microeng 20(12):125001

    Article  Google Scholar 

  • Harink B, Le Gac S, Truckenmüller R, van Blitterswijk C, Habibovic P (2013) Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Lab Chip 13(18):3512–3528

    Article  Google Scholar 

  • Kelleci M, Aydogmus H, Aslanbas L, Erbil SO, Hanay MS (2018) Towards microwave imaging of cells. Lab Chip 18(3):463–472

    Article  Google Scholar 

  • Kim J, Cho H, Han S-I, Han A, Han K-H (2019) A disposable microfluidic flow sensor with a reusable sensing substrate. Sens Actu B Chem 288:147–154

    Article  Google Scholar 

  • Kim S-J, Yokokawa R, Lesher-Perez SC, Takayama S (2012) Constant flow-driven microfluidic oscillator for different duty cycles. Analyt Chem 84(2):1152–1156

    Article  Google Scholar 

  • Kuo JT, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3(3):550–573

    Article  Google Scholar 

  • Lammerink TSJ, Tas NR, Berenschot JW, Elwenspoek MC, Fluitman JHJ (1995) Micromachined hydraulic astable multivibrator. In: Proceedings IEEE micro electro mechanical systems. Citeseer, p 13

  • Lin W-C, Burns MA (2015) Low-power micro-fabricated liquid flow-rate sensor. Analyt Methods 7(9):3981–3987

    Article  Google Scholar 

  • Maenhout G, Bao J, Markovic T, Ocket I, Nauwelaers B (2019) Reliable, fast and reusable interfacing of high-frequency signals to disposable lab-on-a-chip devices. In: 2019 IEEE MTT-S international microwave biomedical conference (IMBioC). IEEE, pp 1–4

  • Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opinion Biotechnol 25:95–102

    Article  Google Scholar 

  • Nguyen N (1997) Micromachined flow sensors—A review. Flow Measure Instrument 8(1):7–16

    Article  Google Scholar 

  • Nikolic-Jaric M, Romanuik S, Ferrier G, Bridges G, Butler M, Sunley K, Thomson D, Freeman M (2009) Microwave frequency sensor for detection of biological cells in microfluidic channels. Biomicrofluidics 3(3):034103

    Article  Google Scholar 

  • Noeth N, Keller SS, Boisen A (2014) Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems. Sensors 14(1):229–244

    Article  Google Scholar 

  • Oosterbroek R, Lammerink TS, Berenschot JW, Krijnen GJ, Elwenspoek MC, van den Berg A (1999) A micromachined pressure/flow-sensor. Sens Actu A Phys 77(3):167–177

    Article  Google Scholar 

  • Salipante P, Hudson SD, Schmidt JW, Wright JD (2017) Microparticle tracking velocimetry as a tool for microfluidic flow measurements. Exp Fluids 58(7):85

    Article  Google Scholar 

  • Secme A, Tefek U, Sari B, Pisheh HS, Uslu HD, Akbulut O, Kucukoglu B, Erdogan RT, Alhmoud H, Sahin O (2023) High resolution dielectric characterization of single cells and microparticles using ıntegrated microfluidic microwave sensors. IEEE Sens J. https://doi.org/10.1109/JSEN.2023.3250401

    Article  Google Scholar 

  • Stern L, Bakal A, Tzur M, Veinguer M, Mazurski N, Cohen N, Levy U (2014) Doppler-based flow rate sensing in microfluidic channels. Sensors 14(9):16799–16807

    Article  Google Scholar 

  • Stevens MM, Maire CL, Chou N, Murakami MA, Knoff DS, Kikuchi Y, Kimmerling RJ, Liu H, Haidar S, Calistri NL (2016) Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat Biotechnol 34(11):1161–1167

    Article  Google Scholar 

  • Stoecklein D, Di Carlo D (2018) Nonlinear microfluidics. Analyt Chem 91(1):296–314

    Article  Google Scholar 

  • Tang M, Liu F, Lei J, Ai Z, Hong S-L, Zhang N, Liu K (2019) Simple and convenient microfluidic flow rate measurement based on microbubble image velocimetry. Microfluid Nanofluid 23(11):118

    Article  Google Scholar 

  • Temiz Y, Delamarche E (2018) Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Ward T, Faivre M, Abkarian M, Stone HA (2005) Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26(19):3716–3724

    Article  Google Scholar 

  • Węglarski M, Jankowski-Mihułowicz P, Pitera G, Jurków D, Dorczyński M (2020) LTCC flow sensor with RFID interface. Sensors 20(1):268

    Article  Google Scholar 

  • Wexler JS, Trinh PH, Berthet H, Quennouz N, Du Roure O, Huppert HE, Lindner A, Stone HA (2013) Bending of elastic fibres in viscous flows: the influence of confinement. J Fluid Mech 720:517–544

    Article  MathSciNet  MATH  Google Scholar 

  • Wissman JP, Sampath K, Freeman SE, Rohde CA (2019) Capacitive bio-inspired flow sensing cupula. Sensors 19(11):2639

    Article  Google Scholar 

  • Wu LY, Di Carlo D, Lee LP (2008) Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdev 10(2):197–202

    Article  Google Scholar 

  • Xia H, Wang Z, Fan W, Wijaya A, Wang W, Wang Z (2012) Converting steady laminar flow to oscillatory flow through a hydroelasticity approach at microscales. Lab Chip 12(1):60–64

    Article  Google Scholar 

  • Xia H, Wang Z, Nguyen V, Ng S, Wang W, Leong F, Le D (2014) Analyzing the transition pressure and viscosity limit of a hydroelastic microfluidic oscillator. Appl Phys Lett 104(2):024101

    Article  Google Scholar 

  • Xia H, Wu J, Zheng J, Zhang J, Wang Z (2021) Nonlinear microfluidics: device physics, functions, and applications. Lab Chip 21(7):1241–1268

    Article  Google Scholar 

  • Zarifi MH, Sadabadi H, Hejazi SH, Daneshmand M, Sanati-Nezhad A (2018) Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering. Sci Rep 8(1):1–10

    Article  Google Scholar 

  • Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I (2019) Label-free microfluidic sorting of microparticles. APL Bioeng. 3(4):041504

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank John E. Sader and Jesse Collis for helpful discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No 758769).

Author information

Authors and Affiliations

Authors

Contributions

MSH and HSP conceived the idea. HSP, AS and HDU fabricated the devices. AS, HDU, UT and HSP conducted experiments. HDU, BK, AS and CA analyzed data. HSP, HDU, AS, CA and MSH wrote the manuscript.

Corresponding author

Correspondence to M. Selim Hanay.

Ethics declarations

Conflict of interests

MSH is a cofounder of Sensonance Engineering company. For other authors, there are no conflicts to declare

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2506 KB)

Supplementary file2 (MOV 57843 KB)

Supplementary file3 (MOV 56810 KB)

Supplementary file4 (MOV 54904 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Secme, A., Sedaghat Pisheh, H., Tefek, U. et al. On-chip flow rate sensing via membrane deformation and bistability probed by microwave resonators. Microfluid Nanofluid 27, 28 (2023). https://doi.org/10.1007/s10404-023-02640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-023-02640-9

Keywords

Navigation