Skip to main content
Log in

On the importance of carrier fluid viscosity and particle–wall interactions in magnetic-guided assembly of quasi-2D systems

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We demonstrate the influence of experimental conditions (carrier fluid viscosity and particle–wall interactions—friction) on the quasi-2D deterministic aggregation kinetics of carbonyl iron magnetic suspensions in rectangular microchannels. On the one hand, the carrier fluid viscosity determines the time scale for aggregation. On the other hand, friction strongly determines the aggregation rate and therefore the kinetic exponent (mean cluster size vs. time dependence). When particle–wall interactions are weak, the mean cluster size increases with a power of 0.65 ± 0.06, for open cavities (≥500 microns channel width), in very good agreement with theories and particle-level simulations. However, when the particle–wall interactions are strong, the kinetic exponent decreases and the aggregation is eventually arrested. This work suggests that particle–wall interactions may be one of the reasons for the discrepancies found in the experimental determination of the aggregation kinetic exponents in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee U, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluidics 13(4):565–577

    Article  Google Scholar 

  • Bombard AJ, Gonçalves FR, Morillas JR, de Vicente J (2014) Magnetorheology of dimorphic magnetorheological fluids based on nanofibers. Smart Mater Struct 23(12):125013

    Article  Google Scholar 

  • Černák J, Helgesen G (2008) Aggregation of magnetic holes in a rotating magnetic field. Phys Rev E 78(6):061401

    Google Scholar 

  • Černák J, Helgesen G, Skjeltorp AT (2004) Aggregation dynamics of nonmagnetic particles in a ferrofluid. Phys Rev E 70(31):031504

    Google Scholar 

  • de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7(8):3701

    Article  Google Scholar 

  • Domínguez-García P, Melle S, Pastor JM, Rubio MA (2007) Scaling in the aggregation dynamics of a magnetorheological fluid. Phys Rev E 76(5):1–13

    Article  Google Scholar 

  • Domínguez-García P, Pastor JM, Rubio MA (2011) Aggregation and disaggregation dynamics of sedimented and charged superparamagnetic micro-particles in water suspension. Eur Phys J E 34:1–7

    Article  Google Scholar 

  • Erb RM, Son HS, Samanta B, Rotello VM, Yellen BB (2009) Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457(7232):999–1002

    Article  Google Scholar 

  • Fernández-Toledano JC, Rodríguez-López J, Shahrivar K, Hidalgo-Álvarez R, Elvira L, Montero de Espinosa F, de Vicente J (2014) Two-step yielding in magnetorheology. J Rheol 58(5):1507–1534

    Article  Google Scholar 

  • Fraden S, Hurd AJ, Meyer RB (1989) Electric-field-induced association of colloidal particles. Phys Rev Lett 63(21):2373

    Article  Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluidics 1(1):22–40

    Google Scholar 

  • Helgesen G, Skjeltorp AT, Mors PM, Botet R, Jullien R (1988) Aggregation of magnetic microspheres: experiments and simulations. Phys Rev Lett 61(15):1736–1739

    Article  Google Scholar 

  • Koser AE, Keim NC, Arratia PE (2013) Structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields. Phys Rev E 88(6):1–6

    Article  Google Scholar 

  • Lee JT, Abid A, Cheung KH, Sudheendra L, Kennedy IM (2012) Superparamagnetic particle dynamics and mixing in a rotating capillary tube with a stationary magnetic field. Microfluid Nanofluidics 13(3):461–468

    Article  Google Scholar 

  • Melle S, Calderón OG, Rubio MA, Fuller GG (2003) Microstructure evolution in magnetorheological suspensions governed by Mason number. Phys Rev E 68(4):41503

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluidics 12(1–4):1–16

    Article  Google Scholar 

  • Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  • Promislow JHE, Gast AP, Fermigier M (1995) Aggregation kinetics of paramagnetic colloidal particles. J Chem Phys 102(13):5492

    Article  Google Scholar 

  • Reynolds CP, Klop KE, Lavergne FA, Morrow SM, Aarts DG, Dullens RP (2015) Deterministic aggregation kinetics of superparamagnetic colloidal particles. J Chem Phys 143(21):214903

    Article  Google Scholar 

  • See H, Doi M (1991) Aggregation kinetics in electro-rheological fluids. J Phys Soc Jpn 60(8):2778–2782

    Article  Google Scholar 

  • Shahrivar K, Carreón-González E, Morillas JR, de Vicente J (2017) Aggregation kinetics of carbonyl iron based magnetic suspensions in 2D. Soft Matter. doi:10.1039/C7SM00075H

    Google Scholar 

  • Vicsek T, Family F (1984) Dynamic scaling for aggregation of clusters. Phys Rev Lett 52(19):1669

    Article  Google Scholar 

  • Wang Z, Shahrivar K, de Vicente J (2014) Creep and recovery of magnetorheological fluids: experiments and simulations. J Rheol 58(6):1725–1750

    Article  Google Scholar 

  • Zhang Y, Nguyen NT (2017) Magnetic digital microfluidics—a review. Lab Chip 17(6):994–1008

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by MINECO MAT 2016-78778-R, MAT 2013-44429-R and PCIN 2015-051 Projects (MINECO and FEDER, Spain), European Regional Development Fund (ERDF), by Junta de Andalucía P11-FQM-7074 Project (Spain) and CONACYT (Grant No. 232347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan de Vicente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrivar, K., Carreón-González, E. & de Vicente, J. On the importance of carrier fluid viscosity and particle–wall interactions in magnetic-guided assembly of quasi-2D systems. Microfluid Nanofluid 21, 120 (2017). https://doi.org/10.1007/s10404-017-1955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1955-y

Keywords

Navigation