Skip to main content
Log in

Effective slip in nanoscale flows through thin channels with sinusoidal patterns of wall wettability

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Liquids are known to slip past non-wetting channel walls. The degree of slippage can be patterned locally through engineered variations in topography and/or chemistry. Electro-osmotic flow through a thin slit-like nanochannel with walls of sinusoidally varying slippage is studied through an asymptotic theory that uses the ratio of pattern amplitude to the average slip as a small parameter. The direction of patterning is perpendicular to the applied electric field. No restrictions are placed on the relative magnitudes of the channel height, wavelength of the pattern, the average slip length and the phase shift between the patterns on the walls. A closed-form analytical expression is provided for the effective slip length and tested against limits known from the literature. The results are also generalized for applicability to any unidirectional flow field that might originate from other driving forces such as pressure differential. The asymptotic results are compared with numerical simulations and are found to be in good mutual agreement even for moderate magnitudes of the small parameter in the asymptotic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This expression evaluates to \(b_{eff} \kappa = - c_{0} + o(\alpha^{2} ) n\) with c 0 given by Eq. (19a), by virtue of the global arguments presented in the discussion following Eq. (7).

References

  • Ajdari A (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys Rev E 53(5):4996

    Article  Google Scholar 

  • Asmolov SE, Vinogradova OI (2012) Effective slip boundary conditions for arbitrary one-dimensional surfaces. J Fluid Mech 706:108–117

    Article  MATH  MathSciNet  Google Scholar 

  • Asmolov ES, Zhou J, Schmid F, Vinogradova OI (2013a) Effective slip-length tensor for a flow over weakly slipping stripes. Phys Rev E 88(2):023004

    Article  Google Scholar 

  • Asmolov ES, Schmieschek S, Harting J, Vinogradova OI (2013b) Flow past superhydrophobic surfaces with cosine variation in local slip length. Phys Rev E 87(2):023005

    Article  Google Scholar 

  • Audry MC, Piednoir A, Joseph P, Charlaix E (2010) Amplification of electro-osmotic flows by wall slippage: direct measurement on OTS-surfaces. Faraday Discuss 146:113–124

    Article  Google Scholar 

  • Bahga SS, Vinogradova OI, Bazant MZ (2010) Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J Fluid Mech 644:245–255

    Article  MATH  Google Scholar 

  • Bazant MZ, Vinogradova OI (2008) Tensorial hydrodynamic slip. J Fluid Mech 613:125–134

    Article  MATH  MathSciNet  Google Scholar 

  • Belyaev AV, Vinogradova OI (2010) Effective slip in pressure-driven flow past super-hydrophobic stripes. J Fluid Mech 652:489–499

  • Belyaev AV, Vinogradova OI (2011) Electro-osmosis on anisotropic super-hydrophobic surfaces. Phys Rev Lett 107:098301

    Article  Google Scholar 

  • Bocquet L, Barrat JL (2007) Flow boundary conditions from nano-to micro scales. Soft Matter 3:685–693

    Article  Google Scholar 

  • Chaudhury MK, Whitesides GM (1992) How to make water run uphill. Science 256(5063):1539–1541

    Article  Google Scholar 

  • Choi CH, Westin KJA, Breuer KS (2003) Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys Fluids 15(10):2897–2902

    Article  Google Scholar 

  • Cieplak M, Koplik J, Banavar JR (2001) Boundary conditions at the fluid-solid interface. Phys Rev Lett 86:803–806

    Article  Google Scholar 

  • Cieplak M, Koplik J, Banavar JR (2006) Nanoscale fluid flows in the vicinity of patterned surfaces. arXiv preprint cond-mat/0603475

  • Datta S, Choudhary JN (2013) Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels. Fluid Dyn Res 45(5):055502

    Article  MathSciNet  Google Scholar 

  • Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33(1):265–287

    Article  Google Scholar 

  • Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11(1):371–400

    Article  MathSciNet  Google Scholar 

  • Feuillebois F, Bazant MZ, Vinogradova OI (2009) Effective slip over superhydrophobic surfaces in thin channels. Phys Rev Lett 102(2):026001

    Article  Google Scholar 

  • Feuillebois F, Bazant MZ, Vinogradova OI (2010) Transverse flow in thin superhydrophobic channels. Phys Rev E 82(5):055301

    Article  Google Scholar 

  • Ghosh U, Chakraborty S (2012) Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements. Phys Rev E 85(4):046304

    Article  Google Scholar 

  • Hendy SC, Jasperse M, Burnell J (2005) Effect of patterned slip on micro-and nanofluidic flows. Phys Rev E 72(1):016303

    Article  Google Scholar 

  • Hocking LM (1976) A moving fluid interface on a rough surface. J Fluid Mech 76(04):801–817

    Article  MATH  Google Scholar 

  • Joly L, Ybert C, Trizac E, Bocquet L (2006) Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J Chem Phys 125:204716

    Article  Google Scholar 

  • Kamrin K, Bazant MZ, Stone HA (2010) Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J Fluid Mech 658:409–437

    Article  MATH  MathSciNet  Google Scholar 

  • Karniadakis G, Beskok A, Aluru NR (2006). Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, Berlin

  • Lauga E, Stone HA (2003) Effective slip in pressure driven stokes flow. J Fluid Mech 489: 55–77

  • Lauga E, Brenner M, Stone H (2007) Microfluidics: the no-slip boundary condition. Springer handbook of experimental fluid mechanics. Springer, Berlin, pp 1219–1240

    Chapter  Google Scholar 

  • Lee C, Choi CH (2008) Structured surfaces for a giant liquid slip. Phys Rev Lett 101(6):064501

    Article  MathSciNet  Google Scholar 

  • Lee T, Charrault E, Neto C (2014) Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv Colloid Interface Sci. doi:10.1016/j.cis.2014.02.015

  • Levine S, Marriott JR, Robinson K (1975) Theory of electrokinetic flow in a narrow parallel-plate channel. J Chem Soc Faraday Trans 2 Mol Chem Phys 71:1–11

    Article  Google Scholar 

  • Maali A, Pan Y, Bhushan B, Charlaix E (2012) Hydrodynamic drag-force measurement and slip length on microstructured surfaces. Phys Rev E 85(6):066310

    Article  Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes Nature 438(7064):44

    Article  Google Scholar 

  • Muller VM, Sergeeva IP, Sobolev VD, Churaev NV (1986) “Boundary effects in the theory of electrokinetic phenomena. Colloid J USSR 48:606

    Google Scholar 

  • Murdock JA (1987) Perturbations: theory and methods, vol 27, Society for Industrial Mathematics

  • Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VS (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68(12):2859

    Article  Google Scholar 

  • Ng C, Chu CW (2011) Electrokinetic flows through a parallel-plate channel with slipping stripes on walls. Phys Fluids 23:102002

    Article  Google Scholar 

  • Ng CO, Wang CY (2010) Apparent slip arising from Stokes shear flow over a bidimensional patterned surface. Microfluid Nanofluid 8(3):361–371

    Article  Google Scholar 

  • Ng C, Zhou Q (2012) Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage. Fluid Dyn Res 44:0555507

    Article  MathSciNet  Google Scholar 

  • Philip JR (1972) Flows satisfying mixed no-slip and no-shear conditions. Zeitschrift für angewandte Mathematik und Physik ZAMP 23(3):353–372

    Article  MATH  MathSciNet  Google Scholar 

  • Schmieschek S, Belyaev AV, Harting J, Vinogradova OI (2012) Tensorial slip of superhydrophobic channels. Phys Rev E 85(1):016324

    Article  Google Scholar 

  • Schmitz R, Yordanov S, Butt HJ, Koynov K, Duenweg B (2011) Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: quantitative data analysis. Phys Rev E 84(6):066306

    Article  Google Scholar 

  • Sparreboom W, Van den Berg A, Eijkel JCT (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004

    Article  Google Scholar 

  • Spikes H, Granick S (2003) Equation for slip of simple liquids at smooth solid surfaces. Langmuir 19(12):5065–5071

    Article  Google Scholar 

  • Squires TM (2008) Electrokinetic flows over inhomogeneously slipping surfaces. Phys Fluids 20:092105

    Article  Google Scholar 

  • Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E (2007) High friction on a bubble mattress. Nat Mater 6(9):665–668

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Stroock AD, Dertinger SK, Whitesides GM, Ajdari A (2002) Patterning flows using grooved surfaces. Anal Chem 74(20):5306–5312

    Article  Google Scholar 

  • Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids (1994-present) 14(3), L9–L12

  • Van der Heyden FH, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 6(10):2232–2237

    Article  Google Scholar 

  • Van Dyke M (1987) Slow variations in continuum mechanics. Arch Appl Mech 25:1–45

    MATH  Google Scholar 

  • Vayssade AL, Lee C, Terriac E, Monti F, Cloitre M, Tabeling P (2014) Dynamical role of slip heterogeneities in confined flows. Phys Rev E 89(5):052309

    Article  Google Scholar 

  • Vinogradova OI, Belyaev AV (2011) Wetting, roughness and flow boundary conditions. J Phys: Condens Matter 23:184104

    Google Scholar 

  • Vinogradova OI, Koynov K, Best A, Feuillebois F (2009) Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Phys Rev Lett 102(11):118302

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L (2007) Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys Fluids 19(12):123601

    Article  Google Scholar 

  • Zhao C, Yang C (2012) Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls. Electrophoresis 33(6):899–905

    Article  Google Scholar 

  • Zhou J, Belyaev AV, Schmid F, Vinogradova OI (2012) Anisotropic flow in stripped super-hydrophobic channels. J Chem Phys 136:194706

    Article  Google Scholar 

  • Zhu L, Attard P, Neto C (2011) Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements. Langmuir 27(11):6712–6719

    Article  Google Scholar 

Download references

Acknowledgments

Financial assistance from the SERB division, Department of Science and Technology, India (sanction letter no. SB/FTP/ETA-142/2012), is acknowledged. Abhinav Dhar and Shubham Agarwal of IIT Delhi are thanked for their preliminary findings on the numerical aspects of the problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhra Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, J.N., Datta, S. & Jain, S. Effective slip in nanoscale flows through thin channels with sinusoidal patterns of wall wettability. Microfluid Nanofluid 18, 931–942 (2015). https://doi.org/10.1007/s10404-014-1483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1483-y

Keywords

Navigation