Skip to main content

Advertisement

Log in

Prevalence of Campylobacter spp. in Raccoon Dogs and Badgers in Miyazaki Prefecture, Japan

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

A total of 55 samples of intestinal contents from 28 raccoon dogs (Nyctereutes procyonoides) and 27 badgers (Males anakuma) in Miyazaki prefecture, Japan, were examined for the presence of Campylobacter species. C. jejuni and C. upsaliensis were isolated from 3.6% (n = 1) and 75% (n = 21) of raccoon dogs, respectively. In contrast, no Campylobacter spp. was isolated from the badgers examined. The C. upsaliensis isolates were subjected to antimicrobial susceptibility testing against 8 antimicrobial agents. This revealed that most of the isolates from raccoon dogs were susceptible to the antimicrobial agents examined, whereas strains isolated from healthy dogs in Miyazaki prefecture, showed high rates of resistance. Virulence genes (flaA, cadF, ciaB, cdtA, cdtB, and cdtC) were present in the C. jejuni isolate from a raccoon dog, with the exception of flaB. By contrast, all these virulence genes examined were present in all C. upsaliensis strains isolated from raccoon dogs and dogs. The genetic diversity of those isolates based on the nucleotide sequences of 7 housekeeping genes (adk, aspA, atpA, glnA, glyA, pgi, tkt) was compared with that of C. upsaliensis strains isolated from dogs and strains selected randomly from humans and dogs deposited in the Campylobacter MLST database. The major cluster of raccoon dog strains was separated from both human and dog strains by phylogenetic tree analysis. These results suggest that raccoon dogs are a reservoir of C. upsaliensis and that isolates may represent a population different from that in humans and dogs. To our knowledge, this is the first study to have demonstrated a high prevalence of C. upsaliensis in raccoon dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2

Similar content being viewed by others

References

  • Aoyagi T, Sato Y, Matsuura S, Wada H (2000) Listeriosis in a raccoon dog (Nyctereutes procyonoides) associated with canine distemper. Journal of Veterinary Medical Science 62:639–641

    Article  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourke B, Chan VL, Sherman P (1998) Campylobacter upsaliensis: waiting in the wings. Clinical Microbiology Reviews 11:440–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter JE, Cimolai N (1996) Hemolytic-uremic syndrome associated with acute Campylobacter upsaliensis gastroenteritis. Nephron 74:489

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2010) Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement M100-S20, CLSI, Wayne, PA, USA.

  • Damborg P, Guardabassi L, Pedersen K, Kokotovic B (2008) Comparative analysis of human and canine Campylobacter upsaliensis isolates by amplified fragment length polymorphism. Journal of Clinical Microbiology 46:1504–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duscher T, Hodžić A, Glawischnig W, Duscher GG (2017) The raccoon dog (Nyctereutes procyonoides) and the raccoon (Procyon lotor)-their role and impact of maintaining and transmitting zoonotic diseases in Austria, Central Europe. Parasitology Research 116:1411–1416

    Article  PubMed  Google Scholar 

  • Endtz HP, Ruijs GJ, Zwinderman AH, van der Reijden T, Biever M, Mouton RP (1991) Comparison of six media, including a semisolid agar, for the isolation of various Campylobacter species from stool specimens. Journal of Clinical Microbiology 29:1007–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens H, Giesendorf BA, Vandamme P, Vlaes L, Van den Borre C, Koeken A, Quint WG, Blomme W, Hanicq P, Koster DS (1995) Investigation of an outbreak of Campylobacter upsaliensis in day care centers in Brussels: analysis of relationships among isolates by phenotypic and genotypic typing methods. Journal of Infectious Diseases 172:1298–1305

    Article  CAS  Google Scholar 

  • Ikeda H (1983) Development of young and parental care of the raccoon dog Nyctereutes procyonoides viverrinus TEMMINCK, in captivity. The Journal of the Mammalogical Society of Japan 9:229–236

    Google Scholar 

  • Jones MA, Marston KI, Woodall CA, Maskell DJ, Linton D, Karlyshev AV, Dorrell N, Wren BW, Barrow PA (2004) Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infection and Immunity 72:3769–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JG, Chae JB, Cho YK, Jo YS, Shin NS, Lee H, Choi KS, Yu DH, Park J, Park BK, Chae JS (2018) Molecular Detection of Anaplasma, Bartonella, and Borrelia theileri in Raccoon Dogs (Nyctereutes procyonoides) in Korea. American Journal of Tropical Medicine and Hygiene 98:1061–1068

    Article  CAS  Google Scholar 

  • Kauhala K, Kowalczyk R (2011) Invasion of the racoon dog Nyctereutes procyonoides in Rurope: History of colonization, features behind its success, and threats to native fauna. Current Zoology 57:584–598

    Article  PubMed  Google Scholar 

  • Koolman L, Whyte P, Burgess C, Bolton D (2015) Distribution of virulence-associated genes in a selection of Campylobacter isolates. Foodborne pPathogens and Disease 12:424–432

    Article  CAS  Google Scholar 

  • Kowalczyk R, Jędrzejewska B, Zalewski A, Jędrzejewska W (2008) Facilitative interactions between the Eurasian badger (Meles meles), the res fox (Vulpes vulpes) and the invasive racoon dog (Nyctereutes procyonoides) in Białowieża Primeval Forest, Poland. Canadian Journal of Zoology 86:1389–1396

    Article  Google Scholar 

  • Lastovica AJ, le Roux E (2000) Efficient isolation of campylobacteria from stools. Journal of Clinical Microbiology 38:2798–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lempp C, Jungwirth N, Grilo ML, Reckendorf A, Ulrich A, van Neer A, Bodewes R, Pfankuche VM, Bauer C, Osterhaus AD, Baumgärtner W, Siebert U (2017) Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany. PLoS One 12:e0175469.

  • Matsusaki S, Katayama A, Itagaki K, Yamagata H, Tanaka K, Yamami T, Uchida W (1986) Prevalence of Campylobacter jejuni and Campylobacter coli among wild and domestic animals in Yamaguchi Prefecture. Microbiology and Immunology 30:1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Miller WG, On SL, Wang G, Fontanoz S, Lastovica AJ, Mandrell RE (2005) Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. Journal of Clinical Microbiology 43:2315–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa N, Kawashima K, Kondo F (2001) Epidemiological survey of Campylobacter upsaliensis carried by dogs and cats in the south-kyushu area of Japan. Journal of the Japan Veterinary Medical Association 54:707–711

    Article  Google Scholar 

  • Nakamura I, Omori N, Umeda A, Ohkusu K, Matsumoto T (2015) First case report of fatal sepsis due to Campylobacter upsaliensis. Journal of Clinical Microbiology 53:713–715

    Article  PubMed  PubMed Central  Google Scholar 

  • Olkkola S, Kovanen S, Roine J, Hänninen ML, Hielm-Björkman A, Kivistö R (2015) Population genetics and antimicrobial susceptibility of canine campylobacter isolates collected before and after a raw feeding experiment. PLoS One 10:0132660

    Article  Google Scholar 

  • Patton CM, Shaffer N, Edmonds P, Barrett TJ, Lambert MA, Baker C, Perlman DM, Brenner DJ (1989) Human disease associated with “Campylobacter upsaliensis” (catalase-negative or weakly positive Campylobacter species) in the United States. Journal of Clinical Microbiology 27:66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad KN, Pradhan S, Nag VL (2001) Guillain-Barre syndrome and Campylobacter infection. Southeast Asian Journal of Tropical Medicine and Public Health 32:527–530

    CAS  Google Scholar 

  • Ramonaite S, Tamuleviciene E, Alter T, Kasnauskyte N, Malakauskas M (2017) MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania. BMC Infectious Diseases 17:430

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi M, Hänninen ML, Revez J, Hannula M, Zanoni RG (2008) Occurrence and species level diagnostics of Campylobacter spp., enteric Helicobacter spp. and Anaerobiospirillum spp. in healthy and diarrheic dogs and cats. Veterinary Microbiology 129:304–314

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Koike F (2013) Distribution of wild mammal assemblages along an urban-rural-forest landscape gradient in warm-temperate East Asia. PLoS One 8:65464

    Article  Google Scholar 

  • Saeki M (2015) Nyctereutes procyonoides (Gray, 1834). The Wild Mammals on Japan. Second Edition, Kyoto: Shoukadoh Book Sellers and the Mammal Society of Japan.

  • Sandberg M, Bergsjø B, Hofshagen M, Skjerve E, Kruse H (2002) Risk factors for Campylobacter infection in Norwegian cats and dogs. Preventive Veterinary Medicine 55:241–253

    Article  CAS  PubMed  Google Scholar 

  • Sandstedt K, Ursing J, Walder M (1983) Thermotolerant Campylobacter with no or weak catalase activity isolated from dogs. Current Microbiology 8:209–213

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425

    CAS  PubMed  Google Scholar 

  • Shimada M, Ochiai K (2016) Behavioral differences around setts and temporal niche differentiation between Japanese badgers (Meles anakuma) and racoon dogs (Nyctereutes procyonoides). Mammalian Science 56:159–165

    Google Scholar 

  • Taniguchi T, Sekiya A, Higa M, Saeki Y, Umeki K, Okayama A, Hayashi T, Misawa N (2014) Rapid identification and subtyping of Helicobacter cinaedi strains by intact-cell mass spectrometry profiling with the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology 52:95–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2, Unit 2.3.

  • Yamamoto I (1984) Latrine utilization and feces recognition in the raccoon dog, Nyctereutes procyonoides. Journal of Ethology 2:47–54

    Article  Google Scholar 

  • Yamamoto Y (1993) Home range and diel activity pattern of the raccoon dog, Nyctereutes procyonoides viverrinus, in Kawasaki. Bulletin of the Kawasaki Municipal Science Museum for Youth 4:7–12

    Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12:635–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Japan Science and Technology Agency (JST) for Science and Technology Research Partnership for Sustainable Development (SATREPS) (Grant No. JPMJSA1908) and JSPS KAKENHI (Grant No. JP19K15984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misawa Naoaki.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takako, T., Elpita, T., Hiroyuki, S. et al. Prevalence of Campylobacter spp. in Raccoon Dogs and Badgers in Miyazaki Prefecture, Japan. EcoHealth 18, 241–249 (2021). https://doi.org/10.1007/s10393-021-01527-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-021-01527-x

Keywords

Navigation